
Computation

Visualization

Programming

For Use with MATLAB®

User’s Guide
Version 2

Financial Time Series
Toolbox

How to Contact The MathWorks:

www.mathworks.com Web
comp.soft-sys.matlab Newsgroup

support@mathworks.com Technical support
suggest@mathworks.com Product enhancement suggestions
bugs@mathworks.com Bug reports
doc@mathworks.com Documentation error reports
service@mathworks.com Order status, license renewals, passcodes
info@mathworks.com Sales, pricing, and general information

508-647-7000 Phone

508-647-7001 Fax

The MathWorks, Inc. Mail
3 Apple Hill Drive
Natick, MA 01760-2098

For contact information about worldwide offices, see the MathWorks Web site.

Financial Time Series Toolbox User’s Guide
© COPYRIGHT 1999 - 2004 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or repro-
duced in any form without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by,
for, or through the federal government of the United States. By accepting delivery of the Program or
Documentation, the government hereby agrees that this software or documentation qualifies as commercial
computer software or commercial computer software documentation as such terms are used or defined in
FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and conditions of this
Agreement and only those rights specified in this Agreement, shall pertain to and govern the use,
modification, reproduction, release, performance, display, and disclosure of the Program and Documentation
by the federal government (or other entity acquiring for or through the federal government) and shall
supersede any conflicting contractual terms or conditions. If this License fails to meet the government's
needs or is inconsistent in any respect with federal procurement law, the government agrees to return the
Program and Documentation, unused, to The MathWorks, Inc.

MATLAB, Simulink, Stateflow, Handle Graphics, and Real-Time Workshop are registered trademarks, and
TargetBox is a trademark of The MathWorks, Inc.

Other product or brand names are trademarks or registered trademarks of their respective holders.

Printing History: July 1999 First printing New for Version 1.0
December 2000 Online only Updated for Version 1.1
May 2001 Second printingFor Version 1.1
May 2002 Third printing For Version 2.0
June 2004 Online only For Release 14

i

Contents

1
Getting Started

What is the Financial Time Series Toolbox? 1-2

Creating Financial Time Series Objects 1-3
Using the Constructor . 1-3
Transforming a Text File . 1-14

Visualizing Financial Time Series Objects 1-17
Using chartfts . 1-17
Zoom Tool . 1-20
Combine Axes Tool . 1-23

2
Using Financial Time Series

Introduction . 2-2

Working with Financial Time Series Objects 2-3
Financial Time Series Object Structure 2-3
Data Extraction . 2-3
Object to Matrix Conversion . 2-5
Indexing a Financial Time Series Object 2-7
Operations . 2-15
Data Transformation and Frequency Conversion 2-19

Demonstration Program . 2-24
Load the Data . 2-24
Create Financial Time Series Objects 2-25
Create Closing Prices Adjustment Series 2-26
Adjust Closing Prices and Make Them Spot Prices 2-26
Create Return Series . 2-27
Regress Return Series Against Metric Data 2-27

ii Contents

Plot the Results . 2-28
Calculate the Dividend Rate . 2-29

3
Technical Analysis

Introduction . 3-2

Examples . 3-5
Moving Average Convergence/Divergence (MACD) 3-5
Williams %R . 3-6
Relative Strength Index (RSI) . 3-8
On-Balance Volume (OBV) . 3-9

4
Graphical User Interface

Financial Time Series Graphical User Interface (GUI) 4-2
Main Window . 4-2

Using the Financial Time Series GUI 4-8
Getting Started . 4-8
Data Menu . 4-9
Analysis Menu . 4-14
Graphs Menu . 4-15
Saving Time Series Data . 4-19

5
Function Reference

Functions - Categorical List . 5-2
Financial Time Series Object and File Construction 5-3

iii

Arithmetic Functions . 5-3
Mathematical Functions . 5-4
Utility Functions . 5-4
Data Transformation Functions . 5-5
Indicator Functions . 5-6
Calendar Functions . 5-7
Plotting Functions . 5-7
Graphical User Interface Function . 5-7
Financial Time Series Object Management Function 5-7
Information Retrieval Functions . 5-7
Obsolete Functions . 5-8

Functions — Alphabetical List . 5-9

Index

iv Contents

1

Getting Started

What is the Financial Time Series
Toolbox? (p. 1-2)

What the toolbox does

Creating Financial Time Series Objects
(p. 1-3)

Using the constructor or transforming a text file to create
a financial time series object

Visualizing Financial Time Series
Objects (p. 1-17)

Using chartfts and additional specialized tools to
observe time series values

1 Getting Started

1-2

What is the Financial Time Series Toolbox?
The Financial Time Series Toolbox for MATLAB® is a collection of tools for the
analysis of time series data in the financial markets. The toolbox contains a
financial time series object constructor and several methods that operate on
and analyze the object. Financial engineers working with time series data,
such as equity prices or daily interest fluctuations, can use this toolbox for
more intuitive data management than by using regular vectors or matrices.

This chapter discusses how to create a financial time series object in one of two
ways:

• “Using the Constructor” on page 1-3

• “Transforming a Text File” on page 1-14

The chapter also discusses chartfts, a graphical tool for visualizing financial
time series objects. You can find this discussion in “Visualizing Financial Time
Series Objects” on page 1-17.

Creating Financial Time Series Objects

1-3

Creating Financial Time Series Objects
The Financial Time Series Toolbox provides two ways to create a financial time
series object:

• At the command line using the object constructor fints

• From a text data file through the function ascii2fts

The structure of the object minimally consists of a description field, a frequency
indicator field, the date vector field, and at least one data series vector. The
names for the fields are fixed for the first three fields: desc, freq, and dates.
You can specify names of your choice for any data series vectors. If you do not
specify names, the object uses the default names series1, series2, series3,
etc.

If time-of-day information is incorporated in the date vector, the object contains
an additional field named times.

Using the Constructor
The object constructor function fints has five different syntaxes. These forms
exist to simplify object construction. The syntaxes vary according to the types
of input arguments presented to the constructor. The syntaxes are

• Single Matrix Input

- See “Time-of-Day Information Excluded” on page 1-4.

- See “Time-of-Day Information Included” on page 1-7.

• Separate Vector Input

- See “Time-of-Day Information Excluded” on page 1-7.

- See “Time-of-Day Information Included” on page 1-8.

• See “Data Name Input” on page 1-10.

• See “Frequency Indicator Input” on page 1-12.

• See “Description Field Input” on page 1-13.

Single Matrix Input
The date information provided with this syntax must be in serial date number
format. The date number may or may not include time-of-day information.

1 Getting Started

1-4

Note If you are unfamiliar with the concepts of date strings and serial date
numbers, consult the section “Handling and Converting Dates” in the
Financial Toolbox documentation.

Time-of-Day Information Excluded.
fts = fints(dates_and_data)

In this simplest form of syntax, the input must be at least a two-column matrix.
The first column contains the dates in serial date format; the second column is
the data series. The input matrix can have more than two columns, each
additional column representing a different data series or set of observations.

If the input is a two-column matrix, the output object contains four fields: desc,
freq, dates, and series1. The description field, desc, defaults to blanks '',
and the frequency indicator field, freq, defaults to 0. The dates field, dates,
contains the serial dates from the first column of the input matrix, while the
data series field, series1, has the data from the second column of the input
matrix.

The first example makes two financial time series objects. The first one has
only one data series, while the other has more than one. A random vector
provides the values for the data series. The range of dates is arbitrarily chosen
using the today function:

date_series = (today:today+100)';
data_series = exp(randn(1, 101))';
dates_and_data = [date_series data_series];
fts1 = fints(dates_and_data);

Examine the contents of the object fts1 just created. The actual date series you
observe will vary according to the day when you run the example (the value of
today). Also, your values in series1 will differ from those shown, depending
upon the sequence of random numbers generated:

Creating Financial Time Series Objects

1-5

fts1 =

desc: (none)
freq: Unknown (0)

'dates: (101)' 'series1: (101)'
'12-Jul-1999' [0.3124]
'13-Jul-1999' [3.2665]
'14-Jul-1999' [0.9847]
'15-Jul-1999' [1.7095]
'16-Jul-1999' [0.4885]
'17-Jul-1999' [0.5192]
'18-Jul-1999' [1.3694]
'19-Jul-1999' [1.1127]
'20-Jul-1999' [6.3485]
'21-Jul-1999' [0.7595]
'22-Jul-1999' [9.1390]
'23-Jul-1999' [4.5201]
'24-Jul-1999' [0.1430]
'25-Jul-1999' [0.1863]
'26-Jul-1999' [0.5635]
'27-Jul-1999' [0.8304]
'28-Jul-1999' [1.0090]...

The output is truncated for brevity. There are actually 101 data points in the
object.

Note that the desc field displays as (none) instead of '', and that the contents
of the object display as cell array elements. Although the object displays as
such, it should be thought of as a MATLAB structure containing the default
field names for a single data series object: desc, freq, dates, and series1.

Now create an object with more than one data series in it:

date_series = (today:today+100)';
data_series1 = exp(randn(1, 101))';
data_series2 = exp(randn(1, 101))';
dates_and_data = [date_series data_series1 data_series2];
fts2 = fints(dates_and_data);

Now look at the object created (again in abbreviated form):

1 Getting Started

1-6

fts2 =

desc: (none)
freq: Unknown (0)

'dates: (101)' 'series1: (101)' 'series2: (101)'
'12-Jul-1999' [0.5816] [1.2816]
'13-Jul-1999' [5.1253] [0.9262]
'14-Jul-1999' [2.2824] [5.6869]
'15-Jul-1999' [1.2596] [5.0631]
'16-Jul-1999' [1.9574] [1.8709]
'17-Jul-1999' [0.6017] [1.0962]
'18-Jul-1999' [2.3546] [0.4459]
'19-Jul-1999' [1.3080] [0.6304]
'20-Jul-1999' [1.8682] [0.2451]
'21-Jul-1999' [0.3509] [0.6876]
'22-Jul-1999' [4.6444] [0.6244]
'23-Jul-1999' [1.5441] [5.7621]
'24-Jul-1999' [0.1470] [2.1238]
'25-Jul-1999' [1.5999] [1.0671]
'26-Jul-1999' [3.5764] [0.7462]
'27-Jul-1999' [1.8937] [1.0863]
'28-Jul-1999' [3.9780] [2.1516]...

The second data series name defaults to series2, as expected.

Before you can perform any operations on the object, you must set the
frequency indicator field freq to the valid frequency of the data series
contained in the object. You can leave the description field desc blank.

To set the frequency indicator field to a daily frequency, enter

fts2.freq = 1, or

fts2.freq = 'daily'

See the fints function description in the “Function Reference” for a list of
frequency indicators.

Creating Financial Time Series Objects

1-7

Time-of-Day Information Included.

The serial date number used with this form of the fints function can
incorporate time-of-day information. When time-of-day information is present,
the output of the function contains a field times that indicates the time of day.

If you recode a previous example to include time-of-day information, you can
see the additional column present in the output object:

time_series = (now:now+100)';
data_series = exp(randn(1, 101))';
times_and_data = [time_series data_series];
fts1 = fints(times_and_data);

fts1 =

 desc: (none)
 freq: Unknown (0)

 'dates: (101)' 'times: (101)' 'series1: (101)'
 '29-Nov-2001' '14:57' [0.5816]
 '30-Nov-2001' '14:57' [5.1253]
 '01-Dec-2001' '14:57' [2.2824]
 '02-Dec-2001' '14:57' [1.2596]...

Separate Vector Input
The date information provided with this syntax can be in serial date number or
date string format. The date information may or may not include time-of-day
information.

Time-of-Day Information Excluded.
fts = fints(dates, data)

In this second syntax the dates and data series are entered as separate vectors
to fints, the financial time series object constructor function. The dates vector
must be a column vector, while the data series data can be a column vector (if
there is only one data series) or a column-oriented matrix (for multiple data
series). A column-oriented matrix, in this context, indicates that each column
is a set of observations. Different columns are different sets of data series.

Here is an example:

1 Getting Started

1-8

dates = (today:today+100)';
data_series1 = exp(randn(1, 101))';
data_series2 = exp(randn(1, 101))';
data = [data_series1 data_series2];
fts = fints(dates, data)

fts =

desc: (none)
freq: Unknown (0)

'dates: (101)' 'series1: (101)' 'series2: (101)'
'12-Jul-1999' [0.5816] [1.2816]
'13-Jul-1999' [5.1253] [0.9262]
'14-Jul-1999' [2.2824] [5.6869]
'15-Jul-1999' [1.2596] [5.0631]
'16-Jul-1999' [1.9574] [1.8709]
'17-Jul-1999' [0.6017] [1.0962]
'18-Jul-1999' [2.3546] [0.4459]
'19-Jul-1999' [1.3080] [0.6304]
'20-Jul-1999' [1.8682] [0.2451]
'21-Jul-1999' [0.3509] [0.6876]
'22-Jul-1999' [4.6444] [0.6244]
'23-Jul-1999' [1.5441] [5.7621]
'24-Jul-1999' [0.1470] [2.1238]
'25-Jul-1999' [1.5999] [1.0671]
'26-Jul-1999' [3.5764] [0.7462]
'27-Jul-1999' [1.8937] [1.0863]
'28-Jul-1999' [3.9780] [2.1516]...

The result is exactly the same as the first syntax. The only difference between
the first and second syntax is the way the inputs are entered into the
constructor function.

Time-of-Day Information Included.

With this form of the function you can enter the time-of-day information either
as a serial date number or as a date string. If more than one serial date and
time are present, the entry must be in the form of a column-oriented matrix. If
more than one string date and time are present, the entry must be a
column-oriented cell array of dates and times.

Creating Financial Time Series Objects

1-9

With date string input the dates and times can initially be separate
column-oriented date and time series, but you must concatenate them into a
single column-oriented cell array before entering them as the first input to
fints.

For date string input the allowable formats are

• 'ddmmmyy hh:mm' or 'ddmmmyyyy hh:mm'

• 'mm/dd/yy hh:mm' or 'mm/dd/yyyy hh:mm'

• 'dd-mmm-yy hh:mm' or 'dd-mmm-yyyy hh:mm'

• 'mmm.dd,yy hh:mm' or 'mmm.dd,yyyy hh:mm'

The next example shows time-of-day information input as serial date numbers
in a column-oriented matrix:

f = fints([now;now+1],(1:2)')

f =

 desc: (none)
 freq: Unknown (0)

 'dates: (2)' 'times: (2)' 'series1: (2)'
 '29-Nov-2001' '15:22' [1]
 '30-Nov-2001' '15:22' [2]

If the time-of-day information is in date string format, you must provide it to
fints as a column-oriented cell array:

f = fints({'01-Jan-2001 12:00';'02-Jan-2001 12:00'},(1:2)')

f =

 desc: (none)
 freq: Unknown (0)

 'dates: (2)' 'times: (2)' 'series1: (2)'
 '01-Jan-2001' '12:00' [1]
 '02-Jan-2001' '12:00' [2]

1 Getting Started

1-10

If the dates and times are in date string format and contained in separate
matrices, you must concatenate them before using the date and time
information as input to fints:

dates = ['01-Jan-2001'; '02-Jan-2001'; '03-Jan-2001'];
times = ['12:00';'12:00';'12:00'];
dates_time = cellstr([dates,repmat(' ',size(dates,1),1),times]);
f = fints(dates_time,(1:3)')

f =

 desc: (none)
 freq: Unknown (0)

 'dates: (3)' 'times: (3)' 'series1: (3)'
 '01-Jan-2001' '12:00' [1]
 '02-Jan-2001' '12:00' [2]
 '03-Jan-2001' '12:00' [3]

Data Name Input
fts = fints(dates, data, datanames)

The third syntax lets you specify the names for the data series with the
argument datanames. The datanames argument can be a MATLAB string for a
single data series. For multiple data series names, it must be a cell array of
strings.

Look at two examples, one with a single data series and a second with two. The
first example sets the data series name to the specified name First:

dates = (today:today+100)';
data = exp(randn(1, 101))';
fts1 = fints(dates, data, 'First')

fts1 =

desc: (none)
freq: Unknown (0)

'dates: (101)' 'First: (101)'
'12-Jul-1999' [0.4615]
'13-Jul-1999' [1.1640]

Creating Financial Time Series Objects

1-11

'14-Jul-1999' [0.7140]
'15-Jul-1999' [2.6400]
'16-Jul-1999' [0.8983]
'17-Jul-1999' [2.7552]
'18-Jul-1999' [0.6217]
'19-Jul-1999' [1.0714]
'20-Jul-1999' [1.4897]
'21-Jul-1999' [3.0536]
'22-Jul-1999' [1.8598]
'23-Jul-1999' [0.7500]
'24-Jul-1999' [0.2537]
'25-Jul-1999' [0.5037]
'26-Jul-1999' [1.3933]
'27-Jul-1999' [0.3687]...

The second example provides two data series named First and Second:

dates = (today:today+100)';
data_series1 = exp(randn(1, 101))';
data_series2 = exp(randn(1, 101))';
data = [data_series1 data_series2];
fts2 = fints(dates, data, {'First', 'Second'})

fts2 =
desc: (none)
freq: Unknown (0)

'dates: (101)' 'First: (101)' 'Second: (101)'
'12-Jul-1999' [1.2305] [0.7396]
'13-Jul-1999' [1.2473] [2.6038]
'14-Jul-1999' [0.3657] [0.5866]
'15-Jul-1999' [0.6357] [0.4061]
'16-Jul-1999' [4.0530] [0.4096]
'17-Jul-1999' [0.6300] [1.3214]
'18-Jul-1999' [1.0333] [0.4744]
'19-Jul-1999' [2.2228] [4.9702]
'20-Jul-1999' [2.4518] [1.7758]
'21-Jul-1999' [1.1479] [1.3780]
'22-Jul-1999' [0.1981] [0.8595]
'23-Jul-1999' [0.1927] [1.3713]
'24-Jul-1999' [1.5353] [3.8332]

1 Getting Started

1-12

'25-Jul-1999' [0.4784] [0.1067]
'26-Jul-1999' [1.7593] [3.6434]
'27-Jul-1999' [0.2505] [0.6849]
'28-Jul-1999' [1.5845] [1.0025]...

Note Data series names must be valid MATLAB variable names. The only
allowed nonalphanumeric character is the underscore (_) character.

Because freq for fts2 has not been explicitly indicated, the frequency indicator
for fts2 is set to Unknown. Set the frequency indicator field freq before you
attempt any operations on the object. You will not be able to use the object until
the frequency indicator field is set to a valid indicator.

Frequency Indicator Input
fts = fints(dates, data, datanames, freq)

With the fourth syntax you can set the frequency indicator field when you
create the financial time series object. The frequency indicator field freq is set
as the fourth input argument. You will not be able to use the financial time
series object until freq is set to a valid indicator. Valid frequency indicators are

UNKNOWN, Unknown, unknown, U, u,0
DAILY, Daily, daily, D, d,1
WEEKLY, Weekly, weekly, W, w,2
MONTHLY, Monthly, monthly, M, m,3
QUARTERLY, Quarterly, quarterly, Q, q,4
SEMIANNUAL, Semiannual, semiannual, S, s,5
ANNUAL, Annual, annual, A, a,6

The previous example contained sets of daily data. The freq field displayed as
Unknown (0) because the frequency indicator was not explicitly set. The
command

fts = fints(dates, data, {'First', 'Second'}, 1);

sets the freq indicator to Daily(1) when creating the financial time series
object:

Creating Financial Time Series Objects

1-13

fts =

desc: (none)
freq: Daily (1)

'dates: (101)' 'First: (101)' 'Second: (101)'
'12-Jul-1999' [1.2305] [0.7396]
'13-Jul-1999' [1.2473] [2.6038]
'14-Jul-1999' [0.3657] [0.5866]
'15-Jul-1999' [0.6357] [0.4061]
'16-Jul-1999' [4.0530] [0.4096]
'17-Jul-1999' [0.6300] [1.3214]
'18-Jul-1999' [1.0333] [0.4744]...

When you create the object using this syntax, you can use the other valid
frequency indicators for a particular frequency. For a daily data set you can use
DAILY, Daily, daily, D, or d. Similarly, with the other frequencies, you can use
the valid string indicators or their numeric counterparts.

Description Field Input
fts = fints(dates, data, datanames, freq, desc)

With the fifth syntax you can explicitly set the description field as the fifth
input argument. The description can be anything you want. It is not used in
any operations performed on the object.

This example sets the desc field to 'Test TS'.

dates = (today:today+100)';
data_series1 = exp(randn(1, 101))';
data_series2 = exp(randn(1, 101))';
data = [data_series1 data_series2];
fts = fints(dates, data, {'First', 'Second'}, 1, 'Test TS')

fts =
desc: Test TS
freq: Daily (1)

'dates: (101)' 'First: (101)' 'Second: (101)'
'12-Jul-1999' [0.5428] [1.2491]
'13-Jul-1999' [0.6649] [6.4969]
'14-Jul-1999' [0.2428] [1.1163]

1 Getting Started

1-14

'15-Jul-1999' [1.2550] [0.6628]
'16-Jul-1999' [1.2312] [1.6674]
'17-Jul-1999' [0.4869] [0.3015]
'18-Jul-1999' [2.1335] [0.9081]...

Now the description field is filled with the specified string 'Test TS' when the
constructor is called.

Transforming a Text File
The function ascii2fts creates a financial time series object from a text
(ASCII) data file provided that the data file conforms to a general format. The
general format of the text data file is

• Can contain header text lines.

• Can contain column header information. The column header information
must immediately precede the data series columns unless the skiprows
argument (see below) is specified.

• Leftmost column must be the date column.

• Dates must be in a valid date string format.

- 'ddmmmyy' or 'ddmmmyyyy'

- 'mm/dd/yy' or 'mm/dd/yyyy'

- 'dd-mmm-yy' or 'dd-mmm-yyyy'

- 'mmm.dd,yy' or 'mmm.dd,yyyy'

• Each column must be separated either by spaces or a tab.

Several example text data files are included with the toolbox. These files are in
the ftsdata subdirectory within the Financial Time Series Toolbox directory
<matlab>/toolbox/ftseries.

The syntax of the function

fts = ascii2fts(filename, descrow, colheadrow, skiprows);

takes in the data filename (filename), the row number where the text for the
description field is (descrow), the row number of the column header
information (colheadrow), and the row numbers of rows to be skipped
(skiprows). For example, rows need to be skipped when there are intervening
rows between the column head row and the start of the time series data.

Creating Financial Time Series Objects

1-15

Look at the beginning of the ASCII file disney.dat in the ftsdata
subdirectory:

Walt Disney Company (DIS)
Daily prices (3/29/96 to 3/29/99)
DATE OPEN HIGH LOW CLOSE VOLUME
3/29/99 33.0625 33.188 32.75 33.063 6320500
3/26/99 33.3125 33.375 32.75 32.938 5552800
3/25/99 33.5 33.625 32.875 33.375 7936000
3/24/99 33.0625 33.25 32.625 33.188 6025400...

The command line

disfts = ascii2fts('disney.dat', 1, 3, 2)

uses disney.dat to create time series object disfts. This example

• Reads the text data file disney.dat

• Uses the first line in the file as the content of the description field

• Skips the second line

• Parses the third line in the file for column header (or data series names)

• Parses the rest of the file for the date vector as well as the data series values

The resulting financial time series object looks like this.

disfts =

desc: Walt Disney Company (DIS)
freq: Unknown (0)

'dates: (782)' 'OPEN: (782)' 'HIGH: (782)' 'LOW: (782)'
'29-Mar-1996' [21.1938] [21.6250] [21.2920]
'01-Apr-1996' [21.1120] [21.6250] [21.4170]
'02-Apr-1996' [21.3165] [21.8750] [21.6670]
'03-Apr-1996' [21.4802] [21.8750] [21.7500]
'04-Apr-1996' [21.4393] [21.8750] [21.5000]
'05-Apr-1996' [NaN] [NaN] [NaN]
'09-Apr-1996' [21.1529] [21.5420] [21.2080]
'10-Apr-1996' [20.7387] [21.1670] [20.2500]
'11-Apr-1996' [20.0829] [20.5000] [20.0420]
'12-Apr-1996' [19.9189] [20.5830] [20.0830]

1 Getting Started

1-16

'15-Apr-1996' [20.2878] [20.7920] [20.3750]
'16-Apr-1996' [20.3698] [20.9170] [20.1670]
'17-Apr-1996' [20.4927] [20.9170] [20.7080]
'18-Apr-1996' [20.4927] [21.0420] [20.7920]

There are 782 data points in this object. Only the first few lines are shown here.
Also, this object has two other data series, the CLOSE and VOLUME data series,
that are not shown here. Note that in creating the financial time series object,
ascii2fts sorts the data into ascending chronological order.

The frequency indicator field, freq, is set to 0 for Unknown frequency. You can
manually reset it to the appropriate frequency using structure syntax
disfts.freq = 1 for Daily frequency.

With a slightly different syntax, the function ascii2fts can create a financial
time series object when time-of-day data is present in the ASCII file. The new
syntax has the form

fts = ascii2fts(filename, timedata, descrow, colheadrow,
skiprows);

Set timedata to 'T' when time-of-day data is present and to 'NT' when there
is no time data. For an example using this function with time-of-day data, see
the reference page for ascii2fts.

Visualizing Financial Time Series Objects

1-17

Visualizing Financial Time Series Objects
The Financial Time Series Toolbox contains the function chartfts, which
provides a visual representation of a financial time series object. chartfts is
an interactive charting and graphing utility for financial time series objects.
With this function you can observe time series values on the entire range of
dates covered by the time series. The function additionally provides two
specialized tools for extracting additional information about the displayed data
series:

• “Zoom Tool” for focus on a specific time period within the time frame covered
by the time series

• “Combine Axes Tool” to look for patterns among the various data series

Note Interactive charting is also available from the Graphs menu of the
Financial Time Series Toolbox graphical user interface. See “Interactive
Chart” on page 4-17 for additional information.

Using chartfts
chartfts requires a single input argument, tsobj, where tsobj is the name of
the financial time series object you want to explore. Most equity financial time
series objects contain four price series, such as opening, closing, highest, and
lowest prices, plus an additional series containing the volume traded. However,
chartfts is not limited to a time series of equity prices and volume traded. It
can be used to display any time series data you may have.

To illustrate the use of chartfts, use the equity price and volume traded data
for the Walt Disney Corporation (NYSE: DIS) provided in the file disney.mat:

load disney.mat

whos

 Name Size Bytes Class

 dis 782x5 39290 fints object
 dis_CLOSE 782x1 6256 double array

1 Getting Started

1-18

 dis_HIGH 782x1 6256 double array
 dis_LOW 782x1 6256 double array
 dis_OPEN 782x1 6256 double array
 dis_VOLUME 782x1 6256 double array
 dis_nv 782x4 32930 fints object
 q_dis 13x4 2196 fints object

For charting purposes look only at the objects dis (daily equity data including
volume traded) and dis_nv (daily data without volume traded). Both objects
contain the series OPEN, HIGH, LOW, and CLOSE, but only dis contains the
additional VOLUME series.

Use chartfts(dis) to observe the values.

The chart contains five plots, each representing one of the series in the time
series object. Boxes indicate the value of each individual plot. The date box is
always on the left. The number of data boxes on the right depends upon the
number of data series in the time series object, five in this case. The order in

Visualizing Financial Time Series Objects

1-19

which these boxes are arranged (left to right) matches the plots from top to
bottom. With more than eight data series in the object, the scroll bar on the
right is activated so that additional data from the other series can be brought
into view.

Slide the mouse cursor over the chart. A vertical bar appears across all plots.
This bar selects the set of data shown in the boxes below. Move this bar
horizontally and the data changes accordingly.

Click the plot. A small information box displays the data at the point where you
click the mouse button.

1 Getting Started

1-20

Zoom Tool
The zoom feature of chartfts enables a more detailed look at the data during
a selected time frame. The Zoom tool is found under the Chart Tools menu.

Visualizing Financial Time Series Objects

1-21

Note Due to the specialized nature of this feature, do not use the MATLAB
zoom command or Zoom In and Zoom Out from the Tools menu.

When the feature is turned on, you will see two inactive buttons (ZOOM In and
Reset ZOOM) above the boxes. The buttons become active later after certain
actions have been performed.

The figure window title bar displays the status of the chart tool that you are
using. With the Zoom tool turned on, you see Zoom ON in the title bar in
addition to the name of the time series you are working with. When the tool is
off, no status is displayed.

To zoom into the chart, you need to define the starting and ending dates. Define
the starting date by moving the cursor over the chart until the desired date
appears at the bottom left box and click the mouse button. A blue vertical line
indicates the starting date you have selected. Next, again move the cursor over
the chart until the desired ending date appears in the box and click the mouse

1 Getting Started

1-22

once again. This time, a red vertical line appears and the ZOOM In button is
activated.

To zoom into the chart, click the ZOOM In button.

Visualizing Financial Time Series Objects

1-23

The chart is zoomed in. Note that the Reset ZOOM button now becomes active
while the ZOOM In button becomes inactive again. To return the chart to its
original state (not zoomed), click the Reset ZOOM button. To zoom into the
chart even further, repeat the steps above for zooming into the chart.

Turn the Zoom tool off by going back to the Chart Tools menu and choosing
Zoom Off.

With the tool turned off, the chart stays at the last state that it was in. If you
turn it off when the chart is zoomed in, the chart stays zoomed in. If you reset
the zoom before turning it off, the chart becomes the original (not zoomed).

Combine Axes Tool
The Combine Axes tool allows you to combine all axes or specific axes into one.
With axes combined you can visually spot any trends that can occur among the
data series in a financial time series object.

To illustrate this tool, use dis_nv, the financial time series object that does not
contain volume traded data:

1 Getting Started

1-24

chartfts(dis_nv)

To combine axes, choose the Chart Tools menu, followed by Combine Axes
and On.

When the Combine Axes tool is on, check boxes appear beside each individual
plot. An additional check box enables the combination of all plots.

Visualizing Financial Time Series Objects

1-25

Combining All Axes
To combine all plots, click the check box for Select all plots.

1 Getting Started

1-26

Now click the Combine Selected Graphs button to combine the chosen plots.
In this case, all plots are combined.

Visualizing Financial Time Series Objects

1-27

The combined plots have a single plot axis with all data series traced. The
background of each data box has changed to the color corresponding to the color
of the trace that represents the data series. After the axes are combined, the
tool is turned off.

Combining Selected Axes
You can choose any combination of the available axes to combine. For example,
combine the HIGH and LOW price series of the Disney time series. Click the check
boxes next to the corresponding plots. The Combine Selected Graphs button
appears and is active.

1 Getting Started

1-28

Click the Combine Selected Graphs button. The chart with the combined
plots looks like the next figure.

Visualizing Financial Time Series Objects

1-29

The plot with the combined axes is located at the top of the chart while the
remaining plots follow it. The data boxes have also been changed. The boxes
that correspond to the combined axes are relocated to the beginning, and the
background colors are set to the color of the respective traces. The data boxes
for the remaining axes retain their original formats.

Resetting Axes
If you have altered the chart by combining axes, you must reset the axes before
you can visualize additional combinations. Reset the axes with the Reset Axes
menu item under Chart Tools -> Combine Axes. Note that now the On and
Off features are turned off.

1 Getting Started

1-30

With axes reset, the interactive chart appears in its original format, and you
can proceed with additional axes combinations.

2
Using Financial Time
Series

Working with Financial Time Series
Objects (p. 2-3)

Extracting time series data and performing operations on
time series

Demonstration Program (p. 2-24) A comprehensive example illustrating the use of the
toolbox to predict the return on an equity

2 Using Financial Time Series

2-2

Introduction
This chapter discusses how to manipulate and analyze financial time series
data. The major topics discussed include

• “Financial Time Series Object Structure” on page 2-3

• “Data Extraction” on page 2-3

• “Object to Matrix Conversion” on page 2-5

• “Indexing a Financial Time Series Object” on page 2-7

• “Operations” on page 2-15

• “Data Transformation and Frequency Conversion” on page 2-19

Much of this information is summarized in the “Demonstration Program” on
page 2-24.

Working with Financial Time Series Objects

2-3

Working with Financial Time Series Objects
A financial time series object is designed to be used as if it were a MATLAB
structure. (See the MATLAB documentation for a description of MATLAB
structures or how to use MATLAB in general.)

This part of the tutorial assumes that you know how to use MATLAB and are
familiar with MATLAB structures. The terminology is similar to that of a
MATLAB structure. The financial time series object term component is
interchangeable with the MATLAB structure term field.

Financial Time Series Object Structure
A financial time series object always contains three component names: desc
(description field), freq (frequency indicator field), and dates (date vector). If
you build the object using the constructor fints, the default value for the
description field is a blank string (''). If you build the object from a text data
file using ascii2fts, the default is the name of the text data file. The default
for the frequency indicator field is 0 (Unknown frequency). Objects created from
operations can default the setting to 0. For example, if you decide to pick out
values selectively from an object, the frequency of the new object might not be
the same as that of the object from which it came.

The date vector dates does not have a default set of values. When you create
an object, you have to supply the date vector. You can change the date vector
afterwards but, at object creation time, you must provide a set of dates.

The final component of a financial time series object is one or more data series
vectors. If you do not supply a name for the data series, the default name is
series1. If you have multiple data series in an object and do not supply the
names, the default is the name series followed by a number, for example,
series1, series2, and series3.

Data Extraction
Here is an exercise on how to extract data from a financial time series object.
As mentioned before, you can think of the object as a MATLAB structure.
Highlight each line in the exercise in the MATLAB Help browser, press the
right mouse key, and select Evaluate Selection to execute it.

To begin, create a financial time series object called myfts:

2 Using Financial Time Series

2-4

dates = (datenum('05/11/99'):datenum('05/11/99')+100)';
data_series1 = exp(randn(1, 101))';
data_series2 = exp(randn(1, 101))';
data = [data_series1 data_series2];
myfts = fints(dates, data);

The myfts object looks like this:

myfts =

desc: (none)
freq: Unknown (0)

'dates: (101)' 'series1: (101)' 'series2: (101)'
'11-May-1999' [2.8108] [0.9323]
'12-May-1999' [0.2454] [0.5608]
'13-May-1999' [0.3568] [1.5989]
'14-May-1999' [0.5255] [3.6682]
'15-May-1999' [1.1862] [5.1284]
'16-May-1999' [3.8376] [0.4952]
'17-May-1999' [6.9329] [2.2417]
'18-May-1999' [2.0987] [0.3579]
'19-May-1999' [2.2524] [3.6492]
'20-May-1999' [0.8669] [1.0150]
'21-May-1999' [0.9050] [1.2445]
'22-May-1999' [0.4493] [5.5466]
'23-May-1999' [1.6376] [0.1251]
'24-May-1999' [3.4472] [1.1195]
'25-May-1999' [3.6545] [0.3374]...

There are more dates in the object; only the first few lines are shown here.

Note The actual data in your series1 and series2 will differ from the above
because of the use of random numbers.

Now create another object with only the values for series2:

Working with Financial Time Series Objects

2-5

srs2 = myfts.series2

srs2 =

desc: (none)
freq: Unknown (0)

'dates: (101)' 'series2: (101)'
'11-May-1999' [0.9323]
'12-May-1999' [0.5608]
'13-May-1999' [1.5989]
'14-May-1999' [3.6682]
'15-May-1999' [5.1284]
'16-May-1999' [0.4952]
'17-May-1999' [2.2417]
'18-May-1999' [0.3579]
'19-May-1999' [3.6492]
'20-May-1999' [1.0150]
'21-May-1999' [1.2445]
'22-May-1999' [5.5466]
'23-May-1999' [0.1251]
'24-May-1999' [1.1195]
'25-May-1999' [0.3374]...

The new object srs2 contains all the dates in myfts, but the only data series is
series2. The name of the data series retains its name from the original object,
myfts.

Note The output from referencing a data series field or indexing a financial
time series object is always another financial time series object. The
exceptions are referencing the description, frequency indicator, and dates
fields, and indexing into the dates field.

Object to Matrix Conversion
The function fts2mat extracts the dates and/or the data series values from an
object and places them into a vector or a matrix. The default behavior extracts
just the values into a vector or a matrix. Look at the next example:

2 Using Financial Time Series

2-6

srs2_vec = fts2mat(myfts.series2)

srs2_vec =

0.9323
0.5608
1.5989
3.6682
5.1284
0.4952
2.2417
0.3579
3.6492
1.0150
1.2445
5.5466
0.1251
1.1195
0.3374...

If you want to include the dates in the output matrix, provide a second input
argument and set it to 1. This results in a matrix whose first column is a vector
of serial date numbers:

format long g

srs2_mtx = fts2mat(myfts.series2, 1)

srs2_mtx =

730251 0.932251754559576
730252 0.560845677519876
730253 1.59888712183914
730254 3.6681500883527
730255 5.12842215360269
730256 0.49519254119977
730257 2.24174134286213
730258 0.357918065917634
730259 3.64915665824198
730260 1.01504236943148
730261 1.24446420606078

Working with Financial Time Series Objects

2-7

730262 5.54661849025711
730263 0.12507959735904
730264 1.11953883096805
730265 0.337398214166607

The vector srs2_vec contains just series2 values. The matrix srs2_mtx
contains dates in the first column and the values of the series2 data series in
the second. Dates in the first column are in serial date format. Serial date
format is a representation of the date string format (for example, serial date =
1 is equivalent to 01-Jan-0000). (The serial date vector can include time-of-day
information.)

The long g display format displays the numbers without exponentiation. (To
revert to the default display format, use format short. (See the format
command in the MATLAB documentation for a description of MATLAB display
formats.) Remember that both the vector and the matrix have 101 rows of data
as in the original object myfts but are shown truncated here.

Indexing a Financial Time Series Object
You can also index into the object as with any other MATLAB variable or
structure. A financial time series object lets you use a date string, a cell array
of date strings, a date string range, or normal integer indexing. You cannot,
however, index into the object using serial dates. If you have serial dates, you
must first use the MATLAB datestr command to convert them into date
strings.

When indexing by date string, note that

• Each date string must contain the day, month, and year. Valid formats are

- 'ddmmmyy hh:mm' or 'ddmmmyyyy hh:mm'

- 'mm/dd/yy hh:mm' or 'mm/dd/yyyy hh:mm'

- 'dd-mmm-yy hh:mm' or 'dd-mmm-yyyy hh:mm'

- 'mmm.dd,yy hh:mm' or 'mmm.dd,yyyy hh:mm'

• All data falls at the end of the indicated time period, that is, weekly data falls
on Fridays, monthly data falls on the end of each month, etc., whenever the
data has gone through a frequency conversion.

2 Using Financial Time Series

2-8

Indexing with Date Strings
With date string indexing you get the values in a financial time series object
for a specific date using a date string as the index into the object. Similarly, if
you want values for multiple dates in the object, you can put those date strings
into a cell array and use the cell array as the index to the object. Here are some
examples.

This example extracts all values for May 11, 1999 from myfts:

format short
myfts('05/11/99')

ans =

desc: (none)
freq: Unknown (0)

'dates: (1)' 'series1: (1)' 'series2: (1)'
'11-May-1999' [2.8108] [0.9323]

The next example extracts only series2 values for May 11, 1999 from myfts:

myfts.series2('05/11/99')

ans =

desc: (none)
freq: Unknown (0)

'dates: (1)' 'series2: (1)'
'11-May-1999' [0.9323]

The third example extracts all values for three different dates:

myfts({'05/11/99', '05/21/99', '05/31/99'})

ans =

desc: (none)
freq: Unknown (0)

Working with Financial Time Series Objects

2-9

'dates: (3)' 'series1: (3)' 'series2: (3)'
'11-May-1999' [2.8108] [0.9323]
'21-May-1999' [0.9050] [1.2445]
'31-May-1999' [1.4266] [0.6470]

The next example extracts only series2 values for the same three dates:

myfts.series2({'05/11/99', '05/21/99', '05/31/99'})

ans =

desc: (none)
freq: Unknown (0)

'dates: (3)' 'series2: (3)'
'11-May-1999' [0.9323]
'21-May-1999' [1.2445]
'31-May-1999' [0.6470]

Indexing with Date String Range
A financial time series is unique because it allows you to index into the object
using a date string range. A date string range consists of two date strings
separated by two colons (::). In MATLAB this separator is called the
double-colon operator. An example of a MATLAB date string range is
'05/11/99::05/31/99'. The operator gives you all data points available
between those dates, including the start and end dates.

Here are some date string range examples:

myfts ('05/11/99::05/15/99')

ans =

desc: (none)
freq: Unknown (0)

'dates: (5)' 'series1: (5)' 'series2: (5)'
'11-May-1999' [2.8108] [0.9323]
'12-May-1999' [0.2454] [0.5608]
'13-May-1999' [0.3568] [1.5989]

2 Using Financial Time Series

2-10

'14-May-1999' [0.5255] [3.6682]
'15-May-1999' [1.1862] [5.1284]

myfts.series2('05/11/99::05/15/99')

ans =

desc: (none)
freq: Unknown (0)

'dates: (5)' 'series2: (5)'
'11-May-1999' [0.9323]
'12-May-1999' [0.5608]
'13-May-1999' [1.5989]
'14-May-1999' [3.6682]
'15-May-1999' [5.1284]

As with any other MATLAB variable or structure, you can assign the output to
another object variable:

nfts = myfts.series2('05/11/99::05/20/99');

nfts is the same as ans in the second example.

If one of the dates does not exist in the object, an error message indicates that
one or both date indexes are out of the range of the available dates in the object.
You can either display the contents of the object or use the command ftsbound
to determine the first and last dates in the object.

Indexing with Integers
Integer indexing is the normal form of indexing in MATLAB. Indexing starts
at 1 (not 0); index = 1 corresponds to the first element, index = 2 to the second
element, index = 3 to the third element, and so on. Here are some examples
with and without data series reference.

Working with Financial Time Series Objects

2-11

Get the first item in series2:

myfts.series2(1)

ans =

desc: (none)
freq: Unknown (0)

'dates: (1)' 'series2: (1)'
'11-May-1999' [0.9323]

Get the first, third, and fifth items in series2:

myfts.series2([1, 3, 5])

ans =

desc: (none)
freq: Unknown (0)

'dates: (3)' 'series2: (3)'
'11-May-1999' [0.9323]
'13-May-1999' [1.5989]
'15-May-1999' [5.1284]

Get items 16 through 20 in series2:

myfts.series2(16:20)

ans =

desc: (none)
freq: Unknown (0)

'dates: (5)' 'series2: (5)'
'26-May-1999' [0.2105]
'27-May-1999' [1.8916]
'28-May-1999' [0.6673]
'29-May-1999' [0.6681]
'30-May-1999' [1.0877]

2 Using Financial Time Series

2-12

Get items 16 through 20 in the financial time series object myfts:

myfts(16:20)

ans =

desc: (none)
freq: Unknown (0)

'dates: (5)' 'series1: (5)' 'series2: (5)'
'26-May-1999' [0.7571] [0.2105]
'27-May-1999' [1.2425] [1.8916]
'28-May-1999' [1.8790] [0.6673]
'29-May-1999' [0.5778] [0.6681]
'30-May-1999' [1.2581] [1.0877]

Get the last item in myfts:

myfts(end)

ans =

desc: (none)
freq: Unknown (0)

'dates: (1)' 'series1: (1)' 'series2: (1)'
'19-Aug-1999' [1.4692] [3.4238]

This example uses the MATLAB special variable end, which points to the last
element of the object when used as an index. The example returns an object
whose contents are the values in the object myfts on the last date entry.

Indexing When Time-of-Day Data Is Present
Both integer and date string indexing are permitted when time-of-day
information is present in the financial time series object. You can index into the
object with both date and time specifications, but not with time of day alone.
To show how indexing works with time-of-day data present, create a financial
time series object called timeday containing a time specification:

dates = ['01-Jan-2001';'01-Jan-2001'; '02-Jan-2001'; ...
'02-Jan-2001'; '03-Jan-2001';'03-Jan-2001'];

times = ['11:00';'12:00';'11:00';'12:00';'11:00';'12:00'];

Working with Financial Time Series Objects

2-13

dates_times = cellstr([dates, repmat(' ',size(dates,1),1),...
times]);

timeday = fints(dates_times,(1:6)',{'Data1'},1,'My first FINTS')

timeday =

 desc: My first FINTS
 freq: Daily (1)

 'dates: (6)' 'times: (6)' 'Data1: (6)'
 '01-Jan-2001' '11:00' [1]
 ' " ' '12:00' [2]
 '02-Jan-2001' '11:00' [3]
 ' " ' '12:00' [4]
 '03-Jan-2001' '11:00' [5]
 ' " ' '12:00' [6]

Use integer indexing to extract the second and third data items from timeday:

timeday(2:3)

ans =

 desc: My first FINTS
 freq: Daily (1)

 'dates: (2)' 'times: (2)' 'Data1: (2)'
 '01-Jan-2001' '12:00' [2]
 '02-Jan-2001' '11:00' [3]

For date string indexing enclose the date and time string in one pair of
quotation marks. If there is one date with multiple times, indexing with only
the date returns the data for all the times for that specific date. For example,
the command timeday('01-Jan-2001') returns the data for all times on
January 1, 2001:

2 Using Financial Time Series

2-14

ans =

 desc: My first FINTS
 freq: Daily (1)

 'dates: (2)' 'times: (2)' 'Data1: (2)'
 '01-Jan-2001' '11:00' [1]
 ' " ' '12:00' [2]

You can also indicate a specific date and time:

timeday('01-Jan-2001 12:00')

ans =

 desc: My first FINTS
 freq: Daily (1)

 'dates: (1)' 'times: (1)' 'Data1: (1)'
 '01-Jan-2001' '12:00' [2]

Use the double-colon operator :: to specify a range of dates and times:

timeday('01-Jan-2001 12:00::03-Jan-2001 11:00')

ans =

 desc: My first FINTS
 freq: Daily (1)

 'dates: (4)' 'times: (4)' 'Data1: (4)'
 '01-Jan-2001' '12:00' [2]
 '02-Jan-2001' '11:00' [3]
 ' " ' '12:00' [4]
 '03-Jan-2001' '11:00' [5]

Treat timeday as a MATLAB structure if you want to obtain the contents of a
specific field. For example, to find the times of day included in this object, enter

Working with Financial Time Series Objects

2-15

datestr(timeday.times)

ans =

11:00 AM
12:00 PM
11:00 AM
12:00 PM
11:00 AM
12:00 PM

Operations
Several MATLAB functions have been overloaded to work with financial time
series objects. The overloaded functions include basic arithmetic functions such
as addition, subtraction, multiplication, and division as well as other functions
such as arithmetic average, filter, and difference. Also, specific methods have
been designed to work with the financial time series object. For a list of
functions grouped by type, refer to “Functions - Categorical List” or enter

help ftseries

at the MATLAB command prompt.

Basic Arithmetic
Financial time series objects permit you to do addition, subtraction,
multiplication, and division, either on the entire object or on specific object
fields. This is a feature that MATLAB structures do not allow. You cannot do
arithmetic operations on entire MATLAB structures, only on specific fields of
a structure.

You can perform arithmetic operations on two financial time series objects as
long as they are compatible. (All contents are the same except for the
description and the values associated with the data series.)

Note Compatible time series are not the same as equal time series. Two time
series objects are equal when everything but the description fields is the same.

2 Using Financial Time Series

2-16

Here are some examples of arithmetic operations on financial time series
objects.

Load a MAT-file that contains some sample financial time series objects:

load dji30short

One of the objects in dji30short is called myfts1:

myfts1 =

desc: DJI30MAR94.dat
freq: Daily (1)

'dates: (20)' 'Open: (20)' 'High: (20)' 'Low: (20)' 'Close: (20)'
'04-Mar-1994' [3830.90] [3868.04] [3800.50] [3832.30]
'07-Mar-1994' [3851.72] [3882.40] [3824.71] [3856.22]
'08-Mar-1994' [3858.48] [3881.55] [3822.45] [3851.72]
'09-Mar-1994' [3853.97] [3874.52] [3817.95] [3853.41]
'10-Mar-1994' [3852.57] [3865.51] [3801.63] [3830.62]...

Create another financial time series object that is identical to myfts1:

newfts = fints(myfts1.dates, fts2mat(myfts1)/100,...
{'Open','High','Low', 'Close'}, 1, 'New FTS')

newfts =

desc: New FTS
freq: Daily (1)

'dates: (20)' 'Open: (20)' 'High: (20)' 'Low: (20)' 'Close:(20)'
'04-Mar-1994' [38.31] [38.68] [38.01] [38.32]
'07-Mar-1994' [38.52] [38.82] [38.25] [38.56]
'08-Mar-1994' [38.58] [38.82] [38.22] [38.52]
'09-Mar-1994' [38.54] [38.75] [38.18] [38.53]
'10-Mar-1994' [38.53] [38.66] [38.02] [38.31]...

Working with Financial Time Series Objects

2-17

Perform an addition operation on both time series objects:

addup = myfts1 + newfts

addup =

desc: DJI30MAR94.dat
freq: Daily (1)

'dates: (20)' 'Open: (20)' 'High: (20)' 'Low: (20)' 'Close: (20)'
'04-Mar-1994' [3869.21] [3906.72] [3838.51] [3870.62]
'07-Mar-1994' [3890.24] [3921.22] [3862.96] [3894.78]
'08-Mar-1994' [3897.06] [3920.37] [3860.67] [3890.24]
'09-Mar-1994' [3892.51] [3913.27] [3856.13] [3891.94]
'10-Mar-1994' [3891.10] [3904.17] [3839.65] [3868.93]...

Now, perform a subtraction operation on both time series objects:

subout = myfts1 - newfts

subout =

desc: DJI30MAR94.dat
freq: Daily (1)

'dates: (20)' 'Open: (20)' 'High: (20)' 'Low: (20)' 'Close: (20)'
'04-Mar-1994' [3792.59] [3829.36] [3762.49] [3793.98]
'07-Mar-1994' [3813.20] [3843.58] [3786.46] [3817.66]
'08-Mar-1994' [3819.90] [3842.73] [3784.23] [3813.20]
'09-Mar-1994' [3815.43] [3835.77] [3779.77] [3814.88]
'10-Mar-1994' [3814.04] [3826.85] [3763.61] [3792.31]...

Operations with Objects and Matrices
You can also perform operations involving a financial time series object and a
matrix or scalar:

2 Using Financial Time Series

2-18

addscalar = myfts1 + 10000

addscalar =

desc: DJI30MAR94.dat
freq: Daily (1)

'dates: (20)' 'Open: (20)' 'High: (20)' 'Low: (20)' 'Close: (20)'
'04-Mar-1994' [13830.90] [13868.04] [13800.50] [13832.30]
'07-Mar-1994' [13851.72] [13882.40] [13824.71] [13856.22]
'08-Mar-1994' [13858.48] [13881.55] [13822.45] [13851.72]
'09-Mar-1994' [13853.97] [13874.52] [13817.95] [13853.41]
'10-Mar-1994' [13852.57] [13865.51] [13801.63] [13862.70]...

For operations with both an object and a matrix, the size of the matrix must
match the size of the object. For example, a matrix to be subtracted from
myfts1 must be 20-by-4, since myfts1 has 20 dates and four data series:

submtx = myfts1 - randn(20, 4)

submtx =

desc: DJI30MAR94.dat
freq: Daily (1)

'dates: (20)' 'Open: (20)' 'High: (20)' 'Low: (20)' 'Close: (20)'
'04-Mar-1994' [3831.33] [3867.75] [3802.10] [3832.63]
'07-Mar-1994' [3853.39] [3883.74] [3824.45] [3857.06]
'08-Mar-1994' [3858.35] [3880.84] [3823.51] [3851.22]
'09-Mar-1994' [3853.68] [3872.90] [3816.53] [3851.92]
'10-Mar-1994' [3853.72] [3866.20] [3802.44] [3831.17]...

Arithmetic Operations with Differing Data Series Names
Arithmetic operations on two objects that have the same size but contain
different data series names require the function fts2mat. This function
extracts the values in an object and puts them into a matrix or vector,
whichever is appropriate.

To see an example, create another financial time series object the same size as
myfts1 but with different values and data series names:

Working with Financial Time Series Objects

2-19

newfts2 = fints(myfts1.dates, fts2mat(myfts1/10000),...
{'Rat1','Rat2', 'Rat3','Rat4'}, 1, 'New FTS')

If you attempt to add (or subtract, etc.) this new object to myfts1, an error
indicates that the objects are not identical. Although they contain the same
dates, number of dates, number of data series, and frequency, the two time
series objects do not have the same data series names. Use fts2mat to bypass
this problem:

addother = myfts1 + fts2mat(newfts2);

This operation adds the matrix that contains the contents of the data series in
the object newfts2 to myfts1. You should carefully consider the effects on your
data before deciding to combine financial time series objects in this manner.

Other Arithmetic Operations
In addition to the basic arithmetic operations, several other mathematical
functions operate directly on financial time series objects. These functions
include exponential (exp), natural logarithm (log), common logarithm (log10),
and many more. See the “Function Reference” chapter for more details.

Data Transformation and Frequency Conversion
The data transformation and the frequency conversion functions convert a data
series into a different format.

Table 2-1: Data Transformation Functions

Function Purpose

boxcox Box-Cox transformation

diff Differencing

fillts Fill missing values

filter Filter

lagts Lag time series object

leadts Lead time series object

peravg Periodic average

2 Using Financial Time Series

2-20

As an example look at boxcox, the Box-Cox transformation function. This
function transforms the data series contained in a financial time series object
into another set of data series with relatively normal distributions.

First create a financial time series object from the supplied whirlpool.dat
data file.

whrl = ascii2fts('whirlpool.dat', 1, 2, []);

Fill any missing values denoted with NaNs in whrl with values calculated using
the linear method:

f_whrl = fillts(whrl);

Transform the nonnormally distributed filled data series f_whrl into a
normally distributed one using Box-Cox transformation:

bc_whrl = boxcox(f_whrl);

smoothts Smooth data

tsmovavg Moving average

Table 2-2: Frequency Conversion Functions

Function New Frequency

convertto As specified

resamplets As specified

toannual Annual

todaily Daily

tomonthly Monthly

toquarterly Quarterly

tosemi Semiannually

toweekly Weekly

Table 2-1: Data Transformation Functions (Continued)

Function Purpose

Working with Financial Time Series Objects

2-21

Compare the result of the Close data series with a normal (Gaussian)
probability distribution function as well as the nonnormally distributed
f_whrl:

subplot(2, 1, 1);
hist(f_whrl.Close);
grid; title('Nonnormally Distributed Data');
subplot(2, 1, 2);
hist(bc_whrl.Close);
grid; title('Box-Cox Transformed Data');

Figure 2-1: Box-Cox Transformation

The bar chart on the top represents the probability distribution function of the
filled data series, f_whrl, which is the original data series whrl with the
missing values interpolated using the linear method. The distribution is
skewed towards the left (not normally distributed). The bar chart on the bottom
is less skewed to the left. If you plot a Gaussian probability distribution

2 Using Financial Time Series

2-22

function (PDF) with similar mean and standard deviation, the distribution of
the transformed data is very close to normal (Gaussian).

When you examine the contents of the resulting object bc_whrl, you find an
identical object to the original object whrl but the contents are the transformed
data series. If you have the Statistics Toolbox, you can generate a Gaussian
PDF with mean and standard deviation equal to those of the transformed data
series and plot it as an overlay to the second bar chart. In the next figure you
can see that it is an approximately normal distribution.

Figure 2-2: Overlay of Gaussian PDF

The next example uses the smoothts function to smooth a time series.

To begin, transform ibm9599.dat, a supplied data file, into a financial time
series object:

ibm = ascii2fts('ibm9599.dat', 1, 3, 2);

Fill the missing data for holidays with data interpolated using the fillts
function and the Spline fill method:

f_ibm = fillts(ibm, 'Spline');

Smooth the filled data series using the default Box (rectangular window)
method:

sm_ibm = smoothts(f_ibm);

Working with Financial Time Series Objects

2-23

Now, plot the original and smoothed closing price series for IBM:

plot(f_ibm.CLOSE('11/01/97::02/28/98'), 'r')
datetick('x', 'mmmyy')
hold on
plot(sm_ibm.CLOSE('11/01/97::02/28/98'), 'b')
hold off
datetick('x', 'mmmyy')
legend('Filled', 'Smoothed')
title('Filled IBM Close Price vs. Smoothed Series')

Figure 2-3: Smoothed Data Series

These examples give you an idea of what you can do with a financial time series
object. This toolbox provides some MATLAB functions that have been
overloaded to work directly with the these objects. The overloaded functions
are those most commonly needed to work with time series data.

2 Using Financial Time Series

2-24

Demonstration Program
This example demonstrates a practical use of the Financial Time Series
Toolbox, predicting the return of a stock from a given set of data. The data is a
series of closing stock prices, a series of dividend payments from the stock, and
an explanatory series (in this case a market index). Additionally, the example
calculates the dividend rate from the stock data provided.

Note You can find a script M-file for this demonstration program in the
directory <matlab>/toolbox/ftseries/ftsdemos on your MATLAB path. The
script is named predict_ret.m.

To perform these computations follow these steps:

1 Load the data.

2 Create financial time series objects from the loaded data.

3 Create the series from dividend payment for adjusting the closing prices.

4 Adjust the closing prices and make them the spot prices.

5 Create the return series.

6 Regress the return series against the metric data (e.g., a market index)
using the MATLAB \ operator.

7 Plot the results.

8 Calculate the dividend rate.

Load the Data
The data for this demonstration is found in the MAT-file
predict_ret_data.mat:

load predict_ret_data.mat

The MAT-file contains six vectors:

Demonstration Program

2-25

• Dates corresponding to the closing stock prices, sdates

• Closing stock prices, sdata

• Dividend dates, divdates

• Dividend paid, divdata

• Dates corresponding to the metric data, expdates

• Metric data, expdata

Use the whos command to see the variables in your MATLAB workspace.

Create Financial Time Series Objects
It is advantageous to work with financial time series objects rather than with
the vectors now in the workspace. By using objects, you can easily keep track
of the dates. Also, you can easily manipulate the data series based on dates
because the object keeps track of the administration of time series for you.

Use the object constructor fints to construct three financial time series
objects.

t0 = fints(sdates, sdata, {'Close'}, 'd', 'Inc');
d0 = fints(divdates, divdata, {'Dividends'}, 'u', 'Inc');
x0 = fints(expdates, expdata, {'Metric'}, 'w', 'Index');

The variables t0, d0, and x0 are financial time series objects containing the
stock closing prices, dividend payments, and the explanatory data,
respectively. To see the contents of an object, type its name at the MATLAB
command prompt and press Enter. For example:

d0

d0 =
'desc:' 'Inc'

 'freq:' 'Unknown (0)'
 '' ''
 'dates: (4)' 'Dividends: (4)'
 '04/15/99' '0.2000'
 '06/30/99' '0.3500'
 '10/02/99' '0.2000'
 '12/30/99' '0.1500'

2 Using Financial Time Series

2-26

Create Closing Prices Adjustment Series
The price of a stock is affected by the dividend payment. On the day before the
dividend payment date, the stock price reflects the amount of dividend to be
paid the next day. On the dividend payment date, the stock price is decreased
by the amount of dividend paid. Create a time series that reflects this
adjustment factor:

dadj1 = d0;
dadj1.dates = dadj1.dates-1;

Now create the series that adjust the prices at the day of dividend payment;
this is an adjustment of 0. You also need to add the previous dividend payment
date since the stock price data reflect the period subsequent to that day; the
previous dividend date was December 31, 1998:

dadj2 = d0;
dadj2.Dividends = 0;
dadj2 = fillts(dadj2,'linear','12/31/98');
dadj2('12/31/98') = 0;

Combining the two objects above gives the data needed to adjust the prices.
However, since the stock price data is daily data and the effect of the dividend
is linearly divided during the period, use the fillts function to make a daily
time series from the adjustment data. Use the dates from the stock price data
to make the dates of the adjustment the same:

dadj3 = [dadj1; dadj2];
dadj3 = fillts(dadj3, 'linear', t0.dates);

Adjust Closing Prices and Make Them Spot Prices
The stock price recorded already reflects the dividend effect. To obtain the
“correct” price, subtract the dividend amount from the closing prices. Put the
result inside the same object t0 with the data series name Spot.

To make sure that adjustments correspond, index into the adjustment series
using the dates from the stock price series t0. Use the datestr command
because t0.dates returns the dates in serial date format. Also, since the data
series name in the adjustment series dadj3 does not match the one in t0, use
the function fts2mat:

t0.Spot = t0.Close - fts2mat(dadj3(datestr(t0.dates)));

Demonstration Program

2-27

Create Return Series
Now calculate the return series from the stock price data. A stock return is
calculated by dividing the difference between the current closing price and the
previous closing price by the previous closing price.

tret = (t0.Spot - lagts(t0.Spot, 1)) ./ lagts(t0.Spot, 1);
tret = chfield(tret, 'Spot', 'Return');

Ignore any warnings you receive during this sequence. Since the operation on
the first line above preserves the data series name Spot, it has to be changed
with the chfield command to reflect the contents correctly.

Regress Return Series Against Metric Data
The explanatory (metric) data set is a weekly data set while the stock price
data is a daily data set. The frequency needs to be the same. Use todaily to
convert the weekly series into a daily series. The constant needs to be included
here to get the constant factor from the regression:

x1 = todaily(x0);
x1.Const = 1;

Get all the dates common to the return series calculated above and the
explanatory (metric) data. Then combine the contents of the two series that
have dates in common into a new time series:

dcommon = intersect(tret.dates, x1.dates);
regts0 = [tret(datestr(dcommon)), x1(datestr(dcommon))];

Remove the contents of the new time series that are not finite:

finite_regts0 = find(all(isfinite(fts2mat(regts0)), 2));
regts1 = regts0(finite_regts0);

Now, place the data to be regressed into a matrix using the function fts2mat.
The first column of the matrix corresponds to the values of the first data series
in the object, the second column to the second data series, and so on. In this
case, the first column is regressed against the second and third column:

DataMatrix = fts2mat(regts1);
XCoeff = DataMatrix(:, 2:3) \ DataMatrix(:, 1);

2 Using Financial Time Series

2-28

Using the regression coefficients, calculate the predicted return from the stock
price data. Put the result into the return time series tret as the data series
PredReturn:

RetPred = DataMatrix(:,2:3) * XCoeff;
tret.PredReturn(datestr(regts1.dates)) = RetPred;

Plot the Results
Plot the results in a single figure window. The top plot in the window has the
actual closing stock prices and the dividend-adjusted stock prices (spot prices).
The bottom plot shows the actual return of the stock and the predicted stock
return through regression:

subplot(2, 1, 1);
plot(t0);
title('Spot and Closing Prices of Stock');
subplot(2, 1, 2);
plot(tret);
title('Actual and Predicted Return of Stock');

Figure 2-4: Closing Prices and Returns

Demonstration Program

2-29

Calculate the Dividend Rate
The last part of the task is to calculate the dividend rate from the stock price
data. Calculate the dividend rate by dividing the dividend payments by the
corresponding closing stock prices.

First check to see if you have the stock price data on all the dividend dates:

datestr(d0.dates, 2)

ans =

04/15/99
06/30/99
10/02/99
12/30/99

t0(datestr(d0.dates))

ans =

 'desc:' 'Inc' ''
 'freq:' 'Daily (1)' ''
 '' '' ''
 'dates: (3)' 'Close: (3)' 'Spot: (3)'
 '04/15/99' '10.3369' '10.3369'
 '06/30/99' '11.4707' '11.4707'
 '12/30/99' '11.2244' '11.2244'

Note that stock price data for October 2, 1999 does not exist. The fillts
function can overcome this situation; fillts allows you to insert a date and
interpolate a value for the date from the existing values in the series. There are
a number of interpolation methods. See fillts in the “Function Reference” for
details.

Use fillts to create a new time series containing the missing date from the
original data series. Then set the frequency indicator to daily:

t1 = fillts(t0,'nearest',d0.dates);
t1.freq = 'd';

2 Using Financial Time Series

2-30

Calculate the dividend rate:

tdr = d0./fts2mat(t1.Close(datestr(d0.dates)))

tdr =

 'desc:' 'Inc'
 'freq:' 'Unknown (0)'
 '' ''
 'dates: (4)' 'Dividends: (4)'
 '04/15/99' '0.0193'
 '06/30/99' '0.0305'
 '10/02/99' '0.0166'
 '12/30/99' '0.0134'

3

Technical Analysis

Introduction (p. 3-2) Tables of technical analysis functions listed by category

Examples (p. 3-5) Examples showing the use of several technical analysis
functions

3 Technical Analysis

3-2

Introduction
Technical analysis (or charting) is used by some investment managers to help
manage portfolios. Technical analysis relies heavily on the availability of
historical data. Investment managers calculate different indicators from
available data and plot them as charts. Observations of price, direction, and
volume on the charts assist managers in making decisions on their investment
portfolios.

The technical analysis functions in this toolbox are tools to help analyze your
investments. The functions in themselves will not make any suggestions or
perform any qualitative analysis of your investment.

Table 3-1: Technical Analysis: Oscillators

Function Type

adosc Accumulation/distribution oscillator

chaikosc Chaikin oscillator

macd Moving Average Convergence/Divergence

stochosc Stochastic oscillator

tsaccel Acceleration

tsmom Momentum

Table 3-2: Technical Analysis: Stochastics

Function Type

chaikvolat Chaikin volatility

fpctkd Fast stochastics

spctkd Slow stochastics

willpctr Williams %R

Introduction

3-3

Table 3-3: Technical Analysis: Indexes

Function Type

negvolidx Negative volume index

posvolidx Positive volume index

rsindex Relative strength index

Table 3-4: Technical Analysis: Indicators

Function Type

adline Accumulation/distribution line

bollinger Bollinger band

hhigh Highest high

llow Lowest low

medprice Median price

onbalvol On balance volume

prcroc Price rate of change

pvtrend Price-volume trend

typprice Typical price

volroc Volume rate of change

wclose Weighted close

willad Williams accumulation/distribution

3 Technical Analysis

3-4

The chapter provides examples for several types of technical analysis:

• “Moving Average Convergence/Divergence (MACD)” on page 3-5

• “Williams %R” on page 3-6

• “Relative Strength Index (RSI)” on page 3-8

• “On-Balance Volume (OBV)” on page 3-9

Examples

3-5

Examples
To illustrate some the technical analysis functions, this section uses the IBM
stock price data contained in the supplied file ibm9599.dat. First create a
financial time series object from the data using ascii2fts:

ibm = ascii2fts('ibm9599.dat', 1, 3, 2);

The time series data contains the open, close, high, and low prices, as well as
the volume traded on each day. The time series dates start on January 3, 1995,
and end on April 1, 1999, with some values missing for weekday holidays;
weekend dates are not included.

Moving Average Convergence/Divergence (MACD)
Moving Average Convergence/Divergence (MACD) is an oscillator function
used by technical analysts to spot overbought and oversold conditions. Look at
the portion of the time series covering the three-month period between October
1, 1995 and December 31, 1995. At the same time fill any missing values due
to holidays within the time period specified:

part_ibm = fillts(ibm('10/01/95::12/31/95'));

Now calculate the MACD, which when plotted produces two lines; the first line
is the MACD line itself and the second is the nine-period moving average line:

macd_ibm = macd(part_ibm);

Note When you call macd without giving it a second input argument to
specify a particular data series name, it searches for a closing price series
named Close (in all combinations of letter cases). For more detail on the macd
function, see macd in the “Function Reference.”

Plot the MACD lines and the High-Low plot of the IBM stock prices in two
separate plots in one window.

subplot(2, 1, 1);
plot(macd_ibm);
title('MACD of IBM Close Stock Prices, 10/01/95-12/31/95');
datetick('x', 'mm/dd/yy');

3 Technical Analysis

3-6

subplot(2, 1, 2);
highlow(part_ibm);
title('IBM Stock Prices, 10/01/95-12/31/95');
datetick('x', 'mm/dd/yy')

The following figure shows the result.

Williams %R
Williams %R is an indicator that measures overbought and oversold levels. The
function willpctr is from the stochastics category. All the technical analysis
functions can accept a different name for a required data series. If, for example,
a function needs the high, low, and closing price series but your time series
object does not have the data series names exactly as High, Low, and Close, you
can specify the correct names as follows.

wpr = willpctr(tsobj, 14, 'HighName', 'Hi', 'LowName', 'Lo',...
'CloseName', 'Closing')

The function willpctr now assumes that your high price series is named Hi,
low price series is named Lo, and closing price series is named Closing.

Examples

3-7

Since the time series object part_ibm has its data series names identical to the
required names, name adjustments are not needed. The input argument to the
function is only the name of the time series object itself.

Calculate and plot the Williams %R indicator for IBM along with the price
range using these commands:

wpctr_ibm = willpctr(part_ibm);
subplot(2, 1, 1);
plot(wpctr_ibm);
title('Williams %R of IBM stock, 10/01/95-12/31/95');
datetick('x', 'mm/dd/yy');
hold on;
plot(wpctr_ibm.dates, -80*ones(1, length(wpctr_ibm)),...
'color', [0.5 0 0], 'linewidth', 2)
plot(wpctr_ibm.dates, -20*ones(1, length(wpctr_ibm)),...
'color', [0 0.5 0], 'linewidth', 2)
subplot(2, 1, 2);
highlow(part_ibm);
title('IBM Stock Prices, 10/01/95-12/31/95');
datetick('x', 'mm/dd/yy');

The next figure shows the results. The top plot has the Williams %R line plus
two lines at -20% and -80%. The bottom plot is the High-Low plot of the IBM
stock price for the corresponding time period.

3 Technical Analysis

3-8

Relative Strength Index (RSI)
The Relative Strength Index (RSI) is a momentum indicator that measures an
equity’s price relative to itself and its past performance. The function name is
rsindex.

The rsindex function needs a series that contains the closing price of a stock.
The default period length for the RSI calculation is 14 periods. This length can
be changed by providing a second input argument to the function. Similar to
the previous commands, if your closing price series is not named Close, you can
provide the correct name.

Calculate and plot the RSI for IBM along with the price range using these
commands:

rsi_ibm = rsindex(part_ibm);
subplot(2, 1, 1);
plot(rsi_ibm);
title('RSI of IBM stock, 10/01/95-12/31/95');
datetick('x', 'mm/dd/yy');

Examples

3-9

hold on;
plot(rsi_ibm.dates, 30*ones(1, length(wpctr_ibm)),...
'color', [0.5 0 0], 'linewidth', 2)
plot(rsi_ibm.dates, 70*ones(1, length(wpctr_ibm)),...
'color',[0 0.5 0], 'linewidth', 2)
subplot(2, 1, 2);
highlow(part_ibm);
title('IBM Stock Prices, 10/01/95-12/31/95');
datetick('x', 'mm/dd/yy');

The next figure shows the result.

On-Balance Volume (OBV)
On-Balance Volume (OBV) relates volume to price change. The function
onbalvol requires you to have the closing price (Close) series as well as the
volume traded (Volume) series.

Calculate and plot the OBV for IBM along with the price range using these
commands:

obv_ibm = onbalvol(part_ibm);
subplot(2, 1, 1);

3 Technical Analysis

3-10

plot(obv_ibm);
title('On-Balance Volume of IBM Stock, 10/01/95-12/31/95');
datetick('x', 'mm/dd/yy');
subplot(2, 1, 2);
highlow(part_ibm);
title('IBM Stock Prices, 10/01/95-12/31/95');
datetick('x', 'mm/dd/yy');

The next figure shows the result.

4

Graphical User Interface

Financial Time Series Graphical User
Interface (GUI) (p. 4-2)

Menus available on the main window of the financial time
series GUI

Using the Financial Time Series GUI
(p. 4-8)

A more in-depth exploration of the capabilities of the
financial time series GUI

4 Graphical User Interface

4-2

Financial Time Series Graphical User Interface (GUI)
Use the financial time series graphical user interface (GUI) to analyze your
time series data and display the results graphically without resorting to the
command line. The GUI lets you visualize the data and the results at the same
time. Through the GUI you have access to the full functionality of the Financial
Time Series Toolbox.

“Using the Financial Time Series GUI” on page 4-8 provides a discussion about
how to use this GUI.

Main Window
Start the financial time series GUI with the command

ftsgui

The main financial time series GUI window appears.

The title bar acts as an active time series object indicator (indicates the
currently active financial time series object). For example, if you load the file
disney.mat and want to use the time series data in the file dis, the title bar on
the main GUI would read as shown.

Financial Time Series Graphical User Interface (GUI)

4-3

The menu bar consists of six menu items: File, Data, Analysis, Graphs,
Window, and Help. Under the menu bar is a status box that displays the steps
you are doing.

File Menu

The File menu contains the commands for input and output. You can read and
save (Load, Save, and Save As) MATLAB MAT-files, ASCII (text) data files,
as well as import (Import) Microsoft Excel XLS files. MATLAB does not
support the export of XLS files at this time.

The File menu also contains the printing suite (Page Setup, Print Preview,
and Print). Lastly, from this menu you can close the GUI itself
(Close FTS GUI) and quit MATLAB (Exit MATLAB).

4 Graphical User Interface

4-4

Data Menu

The Data menu item provides a collection of data manipulation functions and
data conversion functions.

To use any of the functions here, make sure that the correct financial time
series object is displayed in the title bar of the main GUI window.

Financial Time Series Graphical User Interface (GUI)

4-5

Analysis Menu

The Analysis menu provides

• A set of exponentiation and logarithmic functions.

• Statistical tools (Basic Statistics), which calculate and display the
minimum, maximum, average (mean), standard deviation, and variance of
the current (active) time series object; these basic statistics numbers are
displayed in a dialog window.

• Data difference (Difference) and periodic average (Periodic Average)
calculations. Data difference generates a vector of data that is the difference
between the first data point and the second, the second and the third, etc.
The periodic average function calculates the average per defined length
period, for example, averages of every five days.

• Technical analysis functions. See Chapter 3, “Technical Analysis,” for a list
of the provided technical analysis functions.

As with the Data menu, to use any of the Analysis menu functions, make sure
that the correct financial time series object is displayed in the title bar of the
main GUI window.

4 Graphical User Interface

4-6

Graphs Menu

The Graphs menu contains functions that graphically display the current
(active) financial time series object. You can also invoke the interactive
charting function (chartfts) from this menu.

Window Menu

The Window menu lists open windows under the current MATLAB session.

Financial Time Series Graphical User Interface (GUI)

4-7

Help Menu

The Help menu provides a standard set of Help menu links.

4 Graphical User Interface

4-8

Using the Financial Time Series GUI

Getting Started
To use the Financial Time Series GUI, first load (or import) the time series
data. For example, if your data is in a MATLAB MAT-file, select Load from the
File menu.

For illustration purposes, choose the file ftsdata.mat from the dialog
presented.

Using the Financial Time Series GUI

4-9

If you don’t see the MAT-file, look in the directory
<matlab>\toolbox\ftseries\ftsdata, where <matlab> is the MATLAB root
directory (the directory where MATLAB is installed).

Note Data loaded through the Financial Time Series GUI is not available in
the MATLAB workspace. You can access this data only through the GUI itself,
not with any MATLAB command-line functions.

Each financial time series object inside the MAT-file is presented as a line plot
in a separate window. The status window is updated accordingly.

Whirlpool (WHR) is the last plot displayed, as indicated on the title bar of the
main window.

Data Menu
The Data menu provides functions that manipulate time series data.

4 Graphical User Interface

4-10

Here are some example tasks that illustrate the use of the functions on this
menu.

Fill Missing Data
First, look at filling missing data. The Fill Missing Data item uses the toolbox
function fillts. With the data loaded from the file ftsdata, you have three
time series: IBM Corp. (IBM), Walt Disney Co. (DIS), and Whirlpool (WHR).
Click on the window that shows the time series data for Walt Disney Co. (DIS).

Using the Financial Time Series GUI

4-11

To view any missing data in this time series data set, zoom into the plot using
the Zoom tool (the magnifying glass icon with the plus sign) from the toolbar
and select a region.

The gaps represent the missing data in the series. To fill these gaps, go to the
Data menu and choose Fill Missing Data. This selection automatically fills the
gaps and generates a new plot that displays the filled time series data.

4 Graphical User Interface

4-12

You cannot see the filled gaps when you display the entire data set. However,
when you zoom into the plot, you see that the gaps have been eliminated. Note
that the title bar has changed; the title has been prefixed with the word Filled
to reflect the filled time series data.

Frequency Conversion
The Data menu also provides access to frequency conversion functions.

This example changes the DIS time series data frequency from daily to
monthly. Close the Filled Walt Disney Company (DIS) window, and click on the
Walt Disney Company (DIS) window to make it active (current) again. Then,
from the Data menu, choose Convert Data Frequency To and To Monthly.

Using the Financial Time Series GUI

4-13

A new figure window displays the result of this conversion.

The title reflects that the data displayed had its frequency changed to monthly.

4 Graphical User Interface

4-14

Analysis Menu
The Analysis menu provides functions that analyze time series data, including
the technical analysis functions. (See Chapter 3, “Technical Analysis,” for a
complete list of the technical analysis functions and several usage examples.)

For example, you can use the Analysis menu to calculate the natural logarithm
(log) of the data contained within the data set ftsdata.mat. This data file
provides time series data for IBM (IBM), Walt Disney (DIS), and Whirlpool
(WHR). Click on the window displaying the data for IBM Corporation (IBM) to
make it active (current). Then choose the Analysis menu, followed by the
Log(...) menu item. The result appears in its own window.

Close the above window and click again on the IBM data window to make it
active (current).

Note Before proceeding with any time series analysis, make certain that the
title bar confirms that the active data series is the correct one.

Using the Financial Time Series GUI

4-15

From the Analysis menu on the main window, choose Technical Analysis, and
the MACD item. The result, again, is displayed in its own window.

Other analysis functions work similarly.

Graphs Menu
The Graphs menu displays time series data using the provided graphics
functions. Included in the Graphs menu are several types of bar charts (bar,
barh, bar3, bar3h), line plot (plot), candle plot (candle), and High-Low plot
(highlow). The Graphs menu also provides access to the interactive charting
function, chartfts.

Candle Plot
For example, you can display the candle plot of a set of time series data and
invoke the interactive chart on the same data set.

Load the ftsdata.mat data set, and click on the window that displays the
Whirlpool (WHR) time series data to make it active (current). From the main
window choose the Graphs menu and Candle Plot menu item.

4 Graphical User Interface

4-16

The result is shown below.

Using the Financial Time Series GUI

4-17

This does not look much like a candle plot because there are too many data
points in the data set. All the candles are too compressed for effective viewing.
However, when you zoom into a region of this plot, the candles become
apparent.

Interactive Chart
To create an interactive chart (chartfts) on the Whirlpool data, click on the
window that displays the Whirlpool (WHR) data to make it active (current).
Then, go to the Graphs menu and choose Interactive Chart.

4 Graphical User Interface

4-18

The chart that results is shown below.

Using the Financial Time Series GUI

4-19

You can use this interactive chart as if you had invoked it with the chartfts
command from the MATLAB command line. For a tutorial on the use of
chartfts, see “Visualizing Financial Time Series Objects” on page 1-17.

Saving Time Series Data
The Save and Save As items on the main window File menu let you save the
time series data that results from your analyses and computations. These
items save all time series data that has been loaded or processed during the
current session, even if the window displaying the results of a computation has
previously been dismissed.

Note The Save and Save As items on the File menu of individual plot
windows are not available for use.

4 Graphical User Interface

4-20

You can save your time series data in two ways:

• Into the latest MAT-file loaded (Save)

• Into a MAT-file chosen (or named) from the dialog window (Save As)

To illustrate this, start by loading the data file testftsdata.mat (located in
<matlab>/toolbox/ftseries/ftsdata>. Then, convert the Disney (DIS) data
from daily (the original frequency) to monthly data. Next, run the MACD
analysis on the Whirlpool (WHR) data. You now have a set of five open figure
windows.

Saving into the Original File (Save)
To save the data back into the original file (testftsdata.mat), choose Save on
the File menu.

A confirmation window appears. It confirms that the data has been saved in the
latest MAT-file loaded (testftsdata.mat in this example).

Using the Financial Time Series GUI

4-21

Saving into a New File (Save As)
To save the data in a different file, choose Save As from the File menu.

The dialog box that appears lets you choose an existing MAT-file from a list or
type in the name of a new MAT-file you want to create.

After you click the Save button, another confirmation window appears.

4 Graphical User Interface

4-22

This confirmation window indicates that the data has been saved in a new file
named myftstestdata.mat.

5

Function Reference

Functions - Categorical List (p. 5-2) Toolbox functions arranged by category.

Functions — Alphabetical List (p. 5-9) Toolbox functions listed in alphabetic order.

5 Function Reference

5-2

Functions - Categorical List
This section provides detailed descriptions of the functions in the Financial
Time Series Toolbox. The categories of functions described are:

• “Financial Time Series Object and File Construction”

• “Arithmetic Functions”

• “Mathematical Functions”

• “Utility Functions”

• “Data Transformation Functions”

• “Indicator Functions”

• “Calendar Functions”

• “Plotting Functions”

• “Graphical User Interface Function”

• “Financial Time Series Object Management Function”

• “Information Retrieval Functions”

• “Obsolete Functions”

5-3

Financial Time Series Object and File Construction

Arithmetic Functions

ascii2fts Create financial time series object from ASCII data file

fints Construct financial time series object

fts2ascii Write elements of time series data into an ASCII file

ftsnew2old Convert Version 2 time series object to Version 1

fts2mat Convert to matrix

ftsold2new Convert Version 1 time series object to Version 2

end Last date entry

horzcat Concatenate financial time series objects horizontally

length Get number of dates (rows)

minus Financial time series subtraction

mrdivide Financial time series matrix division

mtimes Financial time series matrix multiplication

plus Financial time series addition

power Financial time series power

rdivide Financial time series division

size Get number of dates and data series

subsasgn Content assignment

subsref Subscripted reference

times Financial time series multiplication

uminus Unary minus of financial time series object

uplus Unary plus of financial time series object

vertcat Concatenate financial time series objects vertically

5 Function Reference

5-4

Mathematical Functions

Utility Functions

cumsum Cumulative sum

exp Exponential values

hist Histogram

log Natural logarithm

log2 Base 2 logarithm

log10 Common logarithm

max Maximum value

mean Arithmetic average

min Minimum value

std Standard deviation

chfield Change data series name

extfield Extract data series

fetch Extract data from financial time series object

fieldnames Get names of fields

freqnum Convert string frequency indicator to numeric frequency
indicator

freqstr Convert numeric frequency indicator to string
representation

ftsbound Start and end dates

getfield Get content of a specific field

getnameidx Find name in list

iscompatible Structural equality

isequal Multiple object equality

isfield Check if a string is a field name

5-5

Data Transformation Functions

rmfield Remove data series

setfield Set content of a specific field

sortfts Sort financial time series

boxcox Box-Cox transformation

convertto Convert to specified frequency

diff Differencing

fillts Fill missing values in time series

filter Linear filtering

lagts Lag time series object

leadts Lead time series object

peravg Periodic average

resamplets Downsample data

smoothts Smooth data

toannual Convert to annual

todaily Convert to daily

todecimal Fractional to decimal conversion

tomonthly Convert to monthly

toquarterly Convert to quarterly

toquoted Decimal to fractional conversion

tosemi Convert to semiannual

toweekly Convert to weekly

tsmovavg Moving average

5 Function Reference

5-6

Indicator Functions
adline Accumulation/Distribution line

adosc Accumulation/Distribution oscillator

bollinger Bollinger band

chaikosc Chaikin oscillator

chaikvolat Chaikin volatility

fpctkd Fast stochastics

hhigh Highest high

llow Lowest low

macd Moving Average Convergence/Divergence (MACD)

medprice Median price

negvolidx Negative volume index

onbalvol On-Balance Volume (OBV)

posvolidx Positive volume index

prcroc Price rate of change

pvtrend Price and Volume Trend (PVT)

rsindex Relative Strength Index (RSI)

spctkd Slow stochastics

stochosc Stochastic oscillator

tsaccel Acceleration between periods

tsmom Momentum between periods

typprice Typical price

volroc Volume rate of change

wclose Weighted close

willad Williams Accumulation/Distribution line

willpctr Williams %R

5-7

Calendar Functions

Plotting Functions

Graphical User Interface Function

Financial Time Series Object Management Function

Information Retrieval Functions

busdays Business days in serial date format

bar Bar chart

bar3 Three-dimensional bar chart

bar3h Three-dimensional bar chart (horizontal)

barh Bar chart (horizontal)

candle Candle plot

chartfts Interactive display

highlow High-Low plot

plot Plot data series

ftsgui Financial time series graphical user interface

ftsmanager Create, display, and modify financial time series objects

display Display financial time series object

fintsver Determine version

ftsinfo Financial time series object information

ftsuniq Determine uniqueness

issorted Check if dates and times are monotonically increasing

5 Function Reference

5-8

Obsolete Functions
The function flipud is obsolete, and its description has been removed from the
documentation. The function fts2mtx has been renamed fts2mat. For
compatibility purposes the original functions remain in the product.

Type help @fints/function_name at the MATLAB command line for a
description.

Functions — Alphabetical List

5-9

Functions — Alphabetical List 5

This section contains function reference pages listed alphabetically.

adline

5-10

5adlinePurpose Accumulation/Distribution line

Syntax adln = adline(highp, lowp, closep, tvolume)
adln = adline([highp lowp closep tvolume])
adlnts = adline(tsobj)
adlnts = adline(tsobj, ParameterName, ParameterValue, ...)

Arguments

Description adln = adline(highp, lowp, closep, tvolume) computes the
Accumulation/Distribution line for a set of stock price and volume traded data.
The prices required for this function are the high (highp), low (lowp), and
closing (closep) prices.

adln = adline([highp lowp closep tvolume]) accepts a four-column
matrix as input. The first column contains the high prices, the second contains
the low prices, the third contains the closing prices, and the fourth contains the
volume traded.

adlnts = adline(tsobj) computes the Williams Accumulation/Distribution
line for a set of stock price data contained in the financial time series object
tsobj. The object must contain the high, low, and closing prices plus the
volume traded. The function assumes that the series are named High, Low,
Close, and Volume. All are required. adlnts is a financial time series object
with the same dates as tsobj but with a single series named ADLine.

adlnts = adline(tsobj, ParameterName, ParameterValue, ...) accepts
parameter name/parameter value pairs as input. These pairs specify the
name(s) for the required data series if it is different from the expected default
name(s). Valid parameter names are

highp High price (vector)

lowp Low price (vector)

closep Closing price (vector)

tvolume Volume traded (vector)

tsobj Time series object

adline

5-11

• HighName: high prices series name

• LowName: low prices series name

• CloseName: closing prices series name

• VolumeName: volume traded series name

Parameter values are the strings that represent the valid parameter names.

Examples Compute the Accumulation/Distribution line for Disney stock and plot the
results:

load disney.mat
dis_ADLine = adline(dis)
plot(dis_ADLine)
title('Accumulation/Distribution Line for Disney')

See Also adosc, willad, willpctr

adline

5-12

Reference Achelis, Steven B., Technical Analysis from A To Z, Second printing,
McGraw-Hill, 1995, pp. 56 - 58.

adosc

5-13

5adoscPurpose Accumulation/Distribution oscillator

Syntax ado = adosc(highp, lowp, openp, closep)
ado = adosc([highp lowp openp closep])
adots = adosc(tsobj)
adots = adosc(tsojb, ParameterName, ParameterValue, ...)

Arguments

Description ado = adosc(highp, lowp, openp, closep) returns a vector, ado, that
represents the Accumulation/Distribution (A/D) oscillator. The A/D oscillator is
calculated based on the high, low, opening, and closing prices of each period.
Each period is treated individually.

ado = adosc([highp lowp openp closep]) accepts a four column matrix as
input. The order of the columns must be high, low, opening, and closing prices.

adots = adosc(tsobj) calculates the Accumulation/Distribution (A/D)
oscillator, adots, for the set of stock price data contained in the financial time
series object tsobj. The object must contain the high, low, opening, and closing
prices. The function assumes that the series are named High, Low, Open, and
Close. All are required. adots is a financial time series object with similar
dates to tsobj and only one series named ADOsc.

adots = adosc(tsobj, ParameterName, ParameterValue, ...) accepts
parameter name- parameter value pairs as input. These pairs specify the
name(s) for the required data series if it is different from the expected default
name(s). Valid parameter names are

• HighName: high prices series name

• LowName: low prices series name

highp High price (vector)

lowp Low price (vector)

openp Opening price (vector)

closep Closing price (vector)

tsobj Time series object

adosc

5-14

• OpenName: opening prices series name

• CloseName: closing prices series name

Parameter values are the strings that represents the valid parameter names.

Examples Compute the Accumulation/Distribution oscillator for Disney stock and plot
the results:

load disney.mat
dis_ADOsc = adosc(dis)
plot(dis_ADOsc)
title('A/D Oscillator for Disney')

See Also adline, willad

ascii2fts

5-15

5ascii2ftsPurpose Create financial time series object from ASCII data file

Syntax tsobj = ascii2fts(filename, descrow, colheadrow, skiprows)
tsobj = ascii2fts(filename, timedata, descrow, colheadrow, skiprows)

Arguments

Description tsobj = ascii2fts(filename, descrow, colheadrow, skiprows) creates a
financial time series object tsobj from the ASCII file named filename. This
form of the function can only read a data file without time-of-day information
and create a financial time series object without time information. If time
information is present in the ASCII file, an error message appears.

The general format of the text data file is

• Can contain header text lines.

• Can contain column header information. The column header information
must immediately precede the data series columns unless skiprows is
specified.

• Leftmost column must be the date column.

• Dates must be in a valid date string format:

- 'ddmmmyy' or 'ddmmmyyyy'

- 'mm/dd/yy' or 'mm/dd/yyyy'

- 'dd-mmm-yy' or 'dd-mmm-yyyy'

- 'mmm.dd,yy' or 'mmm.dd,yyyy'

filename ASCII data file

descrow (Optional) Row number in the data file that contains
the description to be used for the description field of
the financial time series object

colheadrow (Optional) Row number that has the column headers/
names

skiprows (Optional) Scalar or vector of row numbers to be
skipped in the data file

timedata Set to 'T' if time-of-day data is present in the ASCII
data file or to 'NT' if no time-of-day data is present.

ascii2fts

5-16

• Each column must be separated either by spaces or a tab.

tsobj = ascii2fts(filename, timedata, descrow, colheadrow,
skiprows) creates a financial time series object containing time-of-day data.
Set timedata to 'T' to create a financial time series object containing
time-of-day data.

Examples Example 1. If your data file contains no description or column header rows,

1/3/95 36.75 36.9063 36.6563 36.875 1167900
1/4/95 37 37.2813 36.625 37.1563 1994700 ...

you can create a financial time series object from it with the simplest form of
the ascii2fts function:

myinc = ascii2fts('my_inc.dat');

myinc =

desc: my_inc.dat
freq: Unknown (0)

'dates: (2)' 'series1: (2)' 'series2: (2)' 'series3: (2)'...
'03-Jan-1995' [36.7500] [36.9063] [36.6563]
'04-Jan-1995' [37] [37.2813] [36.6250]

Example 2: If your data file contains description and column header
information with the data series immediately following the column header row,

International Business Machines Corporation (IBM)
Daily prices (1/3/95 to 4/5/99)
DATE OPEN HIGH LOW CLOSE VOLUME
1/3/95 36.75 36.9063 36.6563 36.875 1167900
1/4/95 37 37.2813 36.625 37.1563 1994700 ...

you must specify the row numbers containing the description and column
headers:

ibm = ascii2fts('ibm9599.dat', 1, 3);

ascii2fts

5-17

ibm =

desc: International Business Machines Corporation (IBM)
freq: Unknown (0)
'dates: (2)' 'OPEN: (2)' 'HIGH: (2)' 'LOW: (2)' ...
'03-Jan-1995' [36.7500] [36.9063] [36.6563]
'04-Jan-1995' [37] [37.2813] [36.6250]

Example 3: If your data file contains rows between the column headers and the
data series, e.g.,

Staples, Inc. (SPLS)
Daily prices
DATE OPEN HIGH LOW CLOSE VOLUME
Starting date: 04/08/1996
Ending date: 04/07/1999
4/8/96 19.50 19.75 19.25 19.375 548500
4/9/96 19.75 20.125 19.375 20 1135900 ...

you need to indicate to ascii2fts the rows in the file that must be skipped.
Assume that you have called the data file containing the Staples data above
staples.dat. The command

spls = ascii2fts('staples.dat', 1, 3, [4 5]);

indicates that the fourth and fifth rows in the file should be skipped in creating
the financial time series object:

spls =

desc: Staples, Inc. (SPLS)
freq: Unknown (0)

'dates: (2)' 'OPEN: (2)' 'HIGH: (2)' 'LOW: (2)'
'08-Apr-1996' [19.5000] [19.7500] [19.2500]
'09-Apr-1996' [19.7500] [20.1250] [19.3750]

Example 4. Create a financial time series object containing time-of-day
information.

First create a data file with time information:

ascii2fts

5-18

dates = ['01-Jan-2001';'01-Jan-2001'; '02-Jan-2001'; ...
'02-Jan-2001'; '03-Jan-2001';'03-Jan-2001'];
times = ['11:00';'12:00';'11:00';'12:00';'11:00';'12:00'];
serial_dates_times = [datenum(dates), datenum(times)];
data = round(10*rand(6,2));
stat = fts2ascii('myfts_file2.txt',serial_dates_times,data, ...
{'dates';'times';'Data1';'Data2'},'My FTS with Time');

Now read the data file back and create a financial time series object:

MyFts = ascii2fts('myfts_file2.txt','t',1,2,1)

MyFts =

 desc: My FTS with Time
 freq: Unknown (0)

'dates: (6)' 'times: (6)' 'Data1: (6)' 'Data2: (6)'
'01-Jan-2001' '11:00' [9] [4]
' " ' '12:00' [7] [9]
'02-Jan-2001' '11:00' [2] [1]
' " ' '12:00' [4] [4]
'03-Jan-2001' '11:00' [9] [8]
' " ' '12:00' [9] [0]

See Also fints, fts2ascii

bar, barh

5-19

5bar, barhPurpose Bar chart

Syntax bar(tsobj)
bar(tsobj, width)
bar(..., 'style')
hbar = bar(...)

barh(...)
hbarh = barh(...)

Arguments

Description bar and barh draw vertical and horizontal bar charts.

bar(tsobj) draws the columns of data series of the object tsobj. The number
of data series dictates the number of vertical bars per group. Each group is the
data for one particular date.

bar(tsobj, width) specifies the width of the bars.

bar(..., 'style') changes the style of the bar chart.

hbar = bar(...) returns a vector of bar handles.

Use the MATLAB command shading faceted to put edges on the bars. Use
shading flat to turn edges off.

tsobj Financial time series object

width Width of the bars and separation of bars within a
group. (Default = 0.8.) If width is 1, the bars within a
group touch one another. Values > 1 produce
overlapping bars.

style 'grouped' (default) or 'stacked'

bar, barh

5-20

Examples Create bar charts for Disney stock showing high, low, opening, and closing
prices.

load disney
bar(q_dis)
title('Bar Chart of Disney Prices')

load disney
bar(q_dis)
title('Horizontal Bar Chart of Disney Prices')

bar, barh

5-21

See Also bar3, bar3h, candle, highlow

bar3, bar3h

5-22

5bar3, bar3hPurpose Three-dimensional bar chart

Syntax bar3(tsobj)
bar3(tsobj, width)
bar3(..., 'style')
hbar3 = bar3(...)

bar3h(...)
hbar3h = bar3h(...)

Arguments

Description bar3 and bar3h draw three-dimensional vertical and horizontal bar charts.

bar3(tsobj) draws the columns of data series of the object tsobj. The number
of data series dictates the number of vertical bars per group. Each group is the
data for one particular date.

bar3(tsobj, width) specifies the width of the bars.

bar3(..., 'style') changes the style of the bar chart.

hbar3 = bar3(...) returns a vector of bar handles.

Use the MATLAB command shading faceted to put edges on the bars. Use
shading flat to turn edges off.

tsobj Financial time series object

width Width of the bars and separation of bars within a
group. (Default = 0.8.) If width is 1, the bars within a
group touch one another. Values > 1 produce
overlapping bars.

style 'detached' (default), 'grouped', or 'stacked'

bar3, bar3h

5-23

Examples Create three-dimensional bar charts for Disney stock showing high, low,
opening, and closing prices.

load disney
bar3(q_dis, 'stacked')
title('Three-Dimensional Bar Chart of Disney Prices')

load disney
bar3(q_dis, 'stacked')
title('Three-Dimensional Bar Chart of Disney Prices (Stacked)')

bar3, bar3h

5-24

See Also bar, barh, candle, highlow

bollinger

5-25

5bollingerPurpose Bollinger band

Syntax [mid, uppr, lowr] = bollinger(data, wsize, wts, nstd)
[midfts, upprfts, lowrfts] = bollinger(tsobj, wsize, wts, nstd)

Arguments

Description [mid, uppr, lowr] = bollinger(data, wsize, wts, nstd) calculates the
middle, upper, and lower bands that make up the Bollinger bands from the
vector data.

mid is the vector that represents the middle band, a simple moving average
with default window size of 20. uppr and lowr are vectors that represent the
upper and lower bands. These bands are +2 times and -2 times moving
standard deviations away from the middle band.

[midfts, upprfts, lowrfts] = bollinger(tsobj, wsize, wts, nstd)
calculates the middle, upper, and lower bands that make up the Bollinger
bands from a financial time series object tsobj.

midfts is a financial time series object that represents the middle band for all
series in tsobj. Both upprfts and lowrfts are financial time series objects
that represent the upper and lower bands of all series, which are +2 times and
-2 times moving standard deviations away from the middle band.

data Data vector

wsize (Optional) Window size. Default = 20.

wts (Optional) Weight factor. Determines the type of
moving average used. Default = 0 (box). 1 = linear.

nstd (Optional) Number of standard deviations for upper
and lower bands. Default = 2.

tsobj Financial time series object

bollinger

5-26

Examples Compute the Bollinger bands for Disney stock closing prices and plot the
results:

load disney.mat
[dis_Mid,dis_Uppr,dis_Lowr]= bollinger(dis);
dis_CloseBolling = [dis_Mid.CLOSE, dis_Uppr.CLOSE,...
dis_Lowr.CLOSE];
plot(dis_CloseBolling)
title('Bollinger Bands for Disney Closing Prices')

See Also tsmovavg

Reference Achelis, Steven B., Technical Analysis from A To Z, Second printing,
McGraw-Hill, 1995, pp. 72 - 74.

boxcox

5-27

5boxcoxPurpose Box-Cox transformation

Syntax [transdat, lambda] = boxcox(data)
[transfts, lambdas] = boxcox(tsobj)
transdat = boxcox(lambda, data)
transfts = boxcox(lambda, tsobj)

Arguments

Description boxcox transforms nonnormally distributed data to a set of data that has
approximately normal distribution. The Box-Cox transformation is a family of
power transformations defined by

The logarithm is the natural logarithm (log base e). The algorithm calls for
finding the λ value that maximizes the Log-Likelihood Function (LLF). The
search is conducted using fminsearch.

[transdat, lambda] = boxcox(data) transforms the data vector data using
the Box-Cox transformation method into transdat. It also calculates the
transformation parameter λ.

[transfts, lambda] = boxcox(tsojb) transforms the financial time series
object tsobj using the Box-Cox transformation method into transfts. It also
calculates the transformation parameter λ.

If the input data is a vector, lambda is a scalar. If the input is a financial time
series object, lambda is a structure with fields similar to the components of the
object, e.g., if the object contains series names Open and Close, lambda has
fields lambda.Open and lambda.Close.

data Data vector. Must be positive.

tsobj Financial time series object

data λ()
dataλ 1–

λ
------------------------- if λ 0≠

data() if λ 1=log

=

boxcox

5-28

transdat = boxcox(lambda, data) and transfts = boxcox(lambda, tsobj)
transform the data using a certain specified λ for the Box-Cox transformation.
This syntax does not find the optimum λ that maximizes the LLF.

See Also fminsearch

busdays

5-29

5busdaysPurpose Business days in serial date format

Syntax bdates = busdays(sdate, edate, bdmode)
bdates = busdays(sdate, edate, bdmode, holvec)

Arguments

Description bdates = busdays(sdate, edate, bdmode) generates a vector of business
days, bdates, in serial date format between the start date, sdate, and end date,
edate, with frequency, bdmode. The dates are generated based on United States
holidays. If you do not supply bdmode, busdays generates a daily vector.

bdates = busdays(sdate, edate, bdmode, holvec) lets you supply a vector
of holidays, holvec, used to generate business days. holvec can either be in
serial date format or date string format. If you use this syntax, you need to
supply the frequency bdmode.

The output, bdates, is a column vector of business dates in serial date format.

If you want a weekday vector without the holidays, set holvec to '' (empty
string) or [] (empty vector).

sdate Start date in string or serial date format

edate End date in string or serial date format

bdmode (Optional) Frequency of business days:
DAILY, Daily, daily, D, d, 1 (default)
WEEKLY, Weekly, weekly, W, w, 2
MONTHLY, Monthly, monthly, M, m, 3
QUARTERLY, Quarterly, quarterly, Q, q, 4
SEMIANNUAL, Semiannual, semiannual, S, s, 5
ANNUAL, Annual, annual, A, a, 6
Strings must be enclosed in single quotation marks.

holvec (Optional) Holiday dates vector in string or serial date
format

candle

5-30

5candlePurpose Candle plot

Syntax candle(tsobj)
candle(tsobj, color)
candle(tsobj, color, dateform)
candle(tsobj, color, dateform, ParameterName, ParameterValue, ...)
hcdl = candle(tsobj, color, dateform, ParameterName, ParameterValue,

...)

Arguments

Description candle(tsobj) generates a candle plot of the data in the financial time series
object tsobj. tsobj must contain at least four data series representing the
high, low, open, and closing prices. These series must have the names High,
Low, Open, and Close (case-insensitive).

candle(tsobj, color) additionally specifies the color of the candle box.

candle(tsobj, color, dateform) additionally specifies the date string
format used as the x-axis tick labels. See datestr in the Financial Toolbox
documentation for a list of date string formats.

candle(tsobj, color, dateform, ParameterName, ParameterValue, ...)
indicates the actual name(s) of the required data series if the data series do not
have the default names. ParameterName can be

• HighName: high prices series name

• LowName: low prices series name

• OpenName: open prices series name

tsobj Financial time series object

color (Optional) A three-element row vector representing
RGB or a color identifier. (See plot in the MATLAB
documentation.)

dateform (Optional) Date string format used as the x-axis tick
labels. (See datetick in the MATLAB documentation.)
You can specify a dateform only when tsobj does not
contain time-of-day data. If tsobj contains time-of-day
data, dateform is restricted to 'dd-mmm-yyyy HH:MM'.

candle

5-31

• CloseName: closing prices series name

hcdl = candle(tsobj, color, dateform, ParameterName, ParameterValue,
...) returns the handle to the patch objects and the line object that make up
the candle plot. hdcl is a three-element column vector representing the
handles to the two patches and one line that forms the candle plot.

Examples Create a candle plot for Disney stock for the dates March 31, 1998 through
April 30, 1998:

load disney.mat
candle(dis('3/31/98::4/30/98'))
title('Disney 3/31/98 to 4/30/98')

See Also chartfts, highlow, plot

candle in the Financial Toolbox documentation

datetick and plot in the MATLAB documentation

chaikosc

5-32

5chaikoscPurpose Chaikin oscillator

Syntax chosc = chaikosc(highp, lowp, closep, tvolume)
chosc = chaikosc([highp lowp closep tvolume])
choscts = chaikosc(tsobj)
choscts = chaikosc(tsobj, ParameterName, ParameterValue, ...)

Arguments

Description The Chaikin oscillator is calculated by subtracting the 10-period exponential
moving average of the Accumulation/Distribution (A/D) line from the
three-period exponential moving average of the A/D line.

chosc = chaikosc(highp, lowp, closep, tvolume) calculates the Chaikin
oscillator (vector), chosc, for the set of stock price and volume traded data
(tvolume). The prices that must be included are the high (highp), low (lowp),
and closing (closep) prices.

chosc = chaikosc([highp lowp closep tvolume]) accepts a four-column
matrix as input.

choscts = chaikosc(tsobj) calculates the Chaikin Oscillator, choscts, from
the data contained in the financial time series object tsobj. tsobj must at least
contain data series with names High, Low, Close, and Volume. These series
must represent the high, low, and closing prices, plus the volume traded.
choscts is a financial time series object with the same dates as tsobj but only
one series named ChaikOsc.

choscts = chaikosc(tsobj, ParameterName, ParameterValue, ...)
accepts parameter name/parameter value pairs as input. These pairs specify
the name(s) for the required data series if it is different from the expected
default name(s). Valid parameter names are

highp High price (vector)

lowp Low price (vector)

closep Closing price (vector)

tvolume Volume traded (vector)

tsobj Financial time series object

chaikosc

5-33

• HighName: high prices series name

• LowName: low prices series name

• CloseName: closing prices series name

• VolumeName: volume traded series name

Parameter values are the strings that represent the valid parameter names.

Examples Compute the Chaikin oscillator for Disney stock and plot the results.

load disney.mat
dis_CHAIKosc = chaikosc(dis)
plot(dis_CHAIKosc)
title('Chaikin Oscillator for Disney')

See Also adline

Reference Achelis, Steven B., Technical Analysis from A To Z, Second printing,
McGraw-Hill, 1995, pp. 91 - 94.

chaikvolat

5-34

5chaikvolatPurpose Chaikin volatility

Syntax chvol = chaikvolat(highp, lowp)
chvol = chaikvolat([highp lowp])
chvol = chaikvolat(high, lowp, nperdiff, manper)
chvol = chaikvolat([high lowp], nperdiff, manper)
chvts = chaikvolat(tsobj)
chvts = chaikvolat(tsobj, nperdiff, manper, ParameterName,

ParameterValue, ...)

Arguments

Description chvol = chaikvolat(highp, lowp) calculates the Chaikin volatility from the
series of stock prices, highp and lowp. The vector chvol contains the Chaikin
volatility values, calculated on a 10-period exponential moving average and
10-period difference.

chvol = chaikvolat([highp lowp]) accepts a two-column matrix as the
input.

chvol = chaikvolat(high, lowp, nperdiff, manper) manually sets the
period difference nperdiff and the length of the exponential moving average
manper in periods.

chvol = chaikvolat([high lowp], nperdiff, manper) accepts a
two-column matrix as the first input.

chvts = chaikvolat(tsobj) calculates the Chaikin volatility from the
financial time series object tsobj. The object must contain at least two series
named High and Low, representing the high and low prices per period. chvts is
a financial time series object containing the Chaikin volatility values, based on

highp High price (vector)

lowp Low price (vector)

nperdiff Period difference (vector). Default = 10.

manper Length of exponential moving average in periods
(vector). Default = 10.

tsobj Financial time series object

chaikvolat

5-35

a 10-period exponential moving average and 10-period difference. chvts has
the same dates as tsobj and a series called ChaikVol.

chvts = chaikvolat(tsobj, nperdiff, manper, ParameterName,
ParameterValue, ...) accepts parameter name/parameter value pairs as
input. These pairs specify the name(s) for the required data series if it is
different from the expected default name(s). Valid parameter names are

• HighName: high prices series name

• LowName: low prices series name

Parameter values are the strings that represent the valid parameter names.

nperdiff, the period difference, and manper, the length of the exponential
moving average in periods, can also be set with this form of chaikvolat.

chaikvolat

5-36

Examples Compute the Chaikin volatility for Disney stock and plot the results:

load disney.mat
dis_CHAIKvol = chaikvolat(dis)
plot(dis_CHAIKvol)
title('Chaikin Volatility for Disney')

See Also chaikosc

Reference Achelis, Steven B., Technical Analysis from A To Z, Second printing,
McGraw-Hill, 1995, pp. 304 - 305.

chartfts

5-37

5chartftsPurpose Interactive display

Syntax chartfts(tsobj)

Description chartfts(tsobj) produces a figure window that contains one or more plots.
You can use the mouse to observe the data at a particular time point of the plot.

Examples Create a financial time series object from the supplied data file ibm9599.dat:

ibmfts = ascii2fts('ibm9599.dat', 1, 3, 2);

Chart the financial time series object ibmfts:

chartfts(ibmfts)

With the Zoom feature set off, a mouse click on the indicator line displays
object data in a pop-up box.

With the Zoom feature set on, mouse clicks indicate the area of the chart to
zoom.

chartfts

5-38

You can find a tutorial on using chartfts in the section “Visualizing Financial
Time Series Objects” on page 1-17. See “Zoom Tool” on page 1-20 for details on
performing the zoom. Also see “Combine Axes Tool” on page 1-23 for
information about combining axes for specified plots.

See Also candle, highlow, plot

chfield

5-39

5chfieldPurpose Change data series name

Syntax newfts = chfield(oldfts, oldname, newname)

Arguments

Description newfts = chfield(oldfts, oldname, newname) changes the name of the
financial time series object component from oldname to newname.

Set newfts = oldfts to change the name of an existing component without
changing the name of the financial time series object.

To change the names of several components at once, specify the series of old
and new component names in corresponding column cell arrays.

You cannot change the names of the object components desc, freq, and dates.

See Also fieldnames, isfield, rmfield

oldfts Name of an existing financial time series object

oldname Name of the existing component in oldfts. A
MATLAB string or column cell array.

newname New name for the component in oldfts. A MATLAB
string or column cell array.

convertto

5-40

5converttoPurpose Convert to specified frequency

Syntax newfts = convertto(oldfts, newfreq)

Arguments

Description convertto converts a financial time series of any frequency to one of a specified
frequency. It makes some assumptions regarding the dates in the resulting
time series.

newfts = convertto(oldfts, newfreq) converts the object oldfts to the
new time series object newfts with the frequency newfreq.

See Also toannual, todaily, tomonthly, toquarterly, tosemi, toweekly

newfreq 1, DAILY, Daily, daily, D, d
2, WEEKLY, Weekly, weekly, W, w
3, MONTHLY, Monthly, monthly, M, m
4, QUARTERLY, Quarterly, quarterly, Q, q
5, SEMIANNUAL, Semiannual, semiannual, S, s
6, ANNUAL, Annual, annual, A, a

cumsum

5-41

5cumsumPurpose Cumulative sum

Syntax newfts = cumsum(oldfts)

Description newfts = cumsum(oldfts) calculates the cumulative sum of each individual
time series data series in the financial time series object oldfts and returns
the result in another financial time series object newfts. newfts contains the
same data series names as oldfts.

Examples Compute the cumulative sum for Disney stock and plot the results:

load disney.mat
cs_dis = cumsum(fillts(dis));
plot(cs_dis)
title('Cumulative Sum for Disney')

See Also cumsum in the MATLAB documentation

diff

5-42

5diffPurpose Differencing

Syntax newfts = diff(oldfts)

Description diff computes the differences of the data series in a financial time series
object. It returns another time series object containing the difference.

newfts = diff(oldfts) computes the difference of all the data in the data
series of the object oldfts and returns the result in the object newfts. newfts
is a financial time series object containing the same data series (names) as the
input oldfts.

See Also diff in the MATLAB documentation

display

5-43

5displayPurpose Display financial time series object

Syntax display(tsobj)

Description display(tsobj) displays a financial time series object in the command
window. Numeric values inherit the format specified in MATLAB.

Note Although the contents of the object are displayed as cells of a cell array,
the object itself is not a cell array.

See Also format in the MATLAB documentation

end

5-44

5endPurpose Last date entry

Syntax end

Description end returns the index to the last date entry in a financial time series object.

Examples Consider a financial time series object called fts:

fts =

desc: DJI30MAR94.dat
freq: Daily (1)

'dates: (20)' 'Open: (20)'
'04-Mar-1994' [3830.9]
'07-Mar-1994' [3851.7]
'08-Mar-1994' [3858.5]
'09-Mar-1994' [3854]
'10-Mar-1994' [3852.6]
'11-Mar-1994' [3832.6]
'14-Mar-1994' [3870.3]
'16-Mar-1994' [3851]
'17-Mar-1994' [3853.6]
'18-Mar-1994' [3865.4]
'21-Mar-1994' [3878.4]
'22-Mar-1994' [3865.7]
'23-Mar-1994' [3868.9]
'24-Mar-1994' [3849.9]
'25-Mar-1994' [3827.1]
'28-Mar-1994' [3776.5]
'29-Mar-1994' [3757.2]
'30-Mar-1994' [3688.4]
'31-Mar-1994' [3639.7]

end

5-45

The command fts(15:end)returns

ans =

desc: DJI30MAR94.dat
freq: Daily (1)

'dates: (6)' 'Open: (6)'
'24-Mar-1994' [3849.9]
'25-Mar-1994' [3827.1]
'28-Mar-1994' [3776.5]
'29-Mar-1994' [3757.2]
'30-Mar-1994' [3688.4]
'31-Mar-1994' [3639.7]

See Also subsasgn, subsref

end in the MATLAB documentation

exp

5-46

5expPurpose Exponential values

Syntax newfts = exp(tsobj)

Description newfts = exp(tsobj) calculates the natural exponential (base e) of all the
data in the data series of the financial time series object tsobj and returns the
result in the object newfts.

See Also log, log2, log10

extfield

5-47

5extfieldPurpose Extract data series

Syntax ftse = extfield(tsobj, fieldnames)

Arguments

Description ftse = extfield(tsobj, fieldnames) extracts from tsobj the dates and
data series specified by fieldnames into a new financial time series object ftse.
ftse has all the dates in tsobj but contains a smaller number of data series.

Examples extfield is identical to referencing a field in the object. For example,

ftse = extfield(fts, 'Close')

is the same as

ftse = fts.Close

This function is the complement of the function rmfield.

See Also rmfield

tsobj Financial time series object

fieldnames Data series to be extracted. A cell array if a list of data
series names (fieldnames) is supplied. A string if only
one is wanted.

fetch

5-48

5fetchPurpose Extract data from financial time series object

Syntax newfts = fetch(oldfts, StartDate, StartTime, EndDate, EndTime,
delta, dmy_specifier, time_ref)

Arguments

Description newfts = fetch(oldfts, StartDate, StartTime, EndDate, EndTime,
delta, dmy_specifier, time_ref) requests data from a financial time series
object beginning from the start date and/or start time to the end date and/or
end time, skipping a specified number of days, months, or years.

oldfts Existing financial time series object

StartDate First date in the range from which data is to be
extracted.

StartTime Beginning time on each day. If you do not require
specific times or oldfts does not contain time
information, use []. If you specify StartTime, you
must also specify EndTime.

EndDate Last date in the range from which data is to be
extracted.

EndTime Ending time on each day. If you do not require specific
times or oldfts does not contain time information, use
[]. If you specify EndTime, you must also specify
StartTime.

delta Skip interval. Can be any positive integer. Units for
the skip interval specified by dmy_specifier.

dmy_specifier Specifies the units for delta. Can be
D, d (Days)
M, m (Months)
Y, y (Years)

time_ref Time reference intervals or specific times. Valid time
reference intervals are 1, 5, 15, or 60 minutes. Enter
specific times as 'hh:mm'.

fetch

5-49

Note If time information is present in oldfts, using [] for start or end times
results in fetch returning all instances of a specific date.

Examples Example 1. Create a financial time series object containing both dates and
times:

dates = ['01-Jan-2001';'01-Jan-2001'; '02-Jan-2001'; ...
 '02-Jan-2001'; '03-Jan-2001';'03-Jan-2001'];
times = ['11:00';'12:00';'11:00';'12:00';'11:00';'12:00'];
dates_times = cellstr([dates, repmat(' ',size(dates,1),1),...
times]);
myFts = fints(dates_times,(1:6)',{'Data1'},1,'My first FINTS')

myFts =

 desc: My first FINTS
 freq: Daily (1)

 'dates: (6)' 'times: (6)' 'Data1: (6)'
 '01-Jan-2001' '11:00' [1]
 ' " ' '12:00' [2]
 '02-Jan-2001' '11:00' [3]
 ' " ' '12:00' [4]
 '03-Jan-2001' '11:00' [5]
 ' " ' '12:00' [6]

To fetch all dates and times from this financial time series, enter

fetch(myFts,'01-Jan-2001',[],'03-Jan-2001',[],1,'d')

 or

fetch(myFts,'01-Jan-2001','11:00','03-Jan-2001','12:00',1,'d')

These commands reproduce the entire time series shown above.

To fetch every other day’s data, enter

fetch(myFts,'01-Jan-2001',[],'03-Jan-2001',[],2,'d')

fetch

5-50

This produces

ans =

 desc: My first FINTS
 freq: Daily (1)

 'dates: (4)' 'times: (4)' 'Data1: (4)'
 '01-Jan-2001' '11:00' [1]
 ' " ' '12:00' [2]
 '03-Jan-2001' '11:00' [5]
 ' " ' '12:00' [6]

Example 2. Create a financial time series object with time intervals of less than
one hour:

dates2 = ['01-Jan-2001';'01-Jan-2001'; '01-Jan-2001';...
'02-Jan-2001'; '02-Jan-2001';'02-Jan-2001'];
times2 = ['11:00';'11:05';'11:06';'12:00';'12:05';'12:06'];
dates_times2 = cellstr([dates2, repmat(' ',size(dates2,1),1),...
times2]);
myFts2 = fints(dates_times2,(1:6)',{'Data1'},1,'My second FINTS')

myFts2 =

 desc: My second FINTS
 freq: Daily (1)

 'dates: (6)' 'times: (6)' 'Data1: (6)'
 '01-Jan-2001' '11:00' [1]
 ' " ' '11:05' [2]
 ' " ' '11:06' [3]
 '02-Jan-2001' '12:00' [4]
 ' " ' '12:05' [5]
 ' " ' '12:06' [6]

Use fetch to extract data from this time series object at five-minute intervals
for each day starting at 11:00 o’clock on January 1, 2001.

fetch

5-51

fetch(myFts2,'01-Jan-2001',[],'02-Jan-2001',[],1,'d',5)

 desc: My second FINTS
 freq: Daily (1)

 'dates: (4)' 'times: (4)' 'Data1: (4)'
 '01-Jan-2001' '11:00' [1]
 ' " ' '11:05' [2]
 '02-Jan-2001' '12:00' [4]
 ' " ' '12:05' [5]

You can use this version of fetch to extract data at specific times. For example,
to fetch data only at 11:06 and 12:06 from myFts2, enter

fetch(myFts2,'01-Jan-2001',[],'02-Jan-2001',[],1,'d',...
{'11:06';'12:06'})

ans =

 desc: My second FINTS
 freq: Daily (1)

 'dates: (2)' 'times: (2)' 'Data1: (2)'
 '01-Jan-2001' '11:06' [3]
 '02-Jan-2001' '12:06' [6]

See Also extfield, ftsbound, getfield, subsref

fieldnames

5-52

5fieldnamesPurpose Get names of fields

Syntax fnames = fieldnames(tsobj)
fnames = fieldnames(tsobj, srsnameonly)

Arguments

Description fieldnames gets field names in a financial time series object.

fnames = fieldnames(tsobj) returns the field names associated with the
financial time series object tsobj as a cell array of strings, including the
common fields: desc, freq, dates (and times if present).

fnames = fieldnames(tsobj, srsnameonly) returns field names depending
upon the setting of srsnameonly. If srsnameonly is 0, the function returns all
field names, including the common fields: desc, freq, dates, and times. If
srsnameonly is set to 1, fieldnames returns only the data series in fnames.

See Also chfield, getfield, isfield, rmfield, setfield

tsobj Financial time series object

srsnameonly Field names returned:
0 = all field names (default).
1 = data series names only.

fillts

5-53

5filltsPurpose Fill missing values in time series

Syntax newfts = fillts(oldfts, fill_method)
newfts = fillts(oldfts, fill_method, newdates)
newfts = fillts(oldfts, fill_method, newdates, {'T1','T2',...})
newfts = fillts(oldfts, fill_method, newdates, 'SPAN', {'TS','TE'},

delta)
newfts = fillts(... sortmode)

Arguments oldfts Financial time series object

fill_method (Optional) Replaces missing values (NaN) in oldfts
using an interpolation process, a constant, or a
zero-order hold.

Valid fill methods (interpolation methods) are:
linear - 'linear ' - 'l' (default)
linear with extrapolation - 'linearExtrap' - 'le'
cubic - 'cubic' - 'c'
cubic with extrapolation - 'cubicExtrap' - 'ce'
spline - 'spline' - 's'
spline with extrapolation - 'splineExtrap' - 'se'
nearest - 'nearest' - 'n'
nearest with extrapolation - 'nearestExtrap' - 'ne'
pchip - 'pchip' - 'p'
pchip with extrapolation - 'pchipExtrap' - 'pe'
(See interp1 for a discussion of extrapolation.)

To fill with a constant, enter that constant.

A zero-order hold ('zero') fills a missing value with
the value immediately preceding it. If the first value
in the time series is missing, it remains a NaN.

fillts

5-54

Description newfts = fillts(oldfts, fill_method) replaces missing values
(represented by NaN) in the financial time series object oldfts with real values,
using either a constant or the interpolation process indicated by fill_method.

newfts = fillts(oldfts, fill_method, newdates) replaces all the
missing values on the specified dates newdates added to the financial time
series oldfts with new values. The values can be a single constant or values
obtained through the interpolation process designated by fill_method. If any
of the dates in newdates exists in oldfts, the existing one has precedence.

newfts = fillts(oldfts, fill_method, newdates, {'T1','T2',...})
additionally allows the designation of specific times of day for addition or
replacement of data.

newfts = fillts(oldfts, fill_method, newdates, 'SPAN', {'TS','TE'},
delta) is similar to the previous format except that you designate only a start
time and an end time. You follow these times with a spanning time interval,
delta.

If you specify only one date for newdates, specifying a start and end time
generates only times for that specific date.

newfts = fillts(... sortmode) additionally denotes whether you want the
order of the dates in the output object to stay the same as in the input object or
to be sorted chronologically.

newdates (Optional) Column vector of serial dates, a date string,
or a column cell array of date strings. If oldfts
contains time of day information, newdates must be
accompanied by a time vector (newtimes). Otherwise,
newdates is assumed to have times of '00:00'.

T1, T2, TS, TE First time, second time, start time, end time

delta Time interval in minutes to span between the start
time and end time

sortmode (Optional) Default = 0 (unsorted). 1 = sorted.

fillts

5-55

sortmode = 0 (unsorted) appends any new dates to the end. The interpolation
and zero-order processes that calculate the values for the new dates work on a
sorted object. Upon completion, the existing dates are reordered as they were
originally, and the new dates are appended to the end.

sortmode = 1 sorts the output. After interpolation, no reordering of the date
sequence occurs.

Examples Create a financial time series object with missing data in the fourth and fifth
rows.

dates = ['01-Jan-2001';'01-Jan-2001'; '02-Jan-2001';...
'02-Jan-2001'; '03-Jan-2001';'03-Jan-2001'];

times = ['11:00';'12:00';'11:00';'12:00';'11:00';'12:00'];
dates_times = cellstr([dates, repmat(' ',size(dates,1),1),...

times]);
OpenFts = fints(dates_times,[(1:3)'; nan; nan; 6],{'Data1'},1,...
'Open Financial Time Series');

OpenFts looks like

OpenFts =

 desc: Open Financial Time Series
 freq: Daily (1)

 'dates: (6)' 'times: (6)' 'Data1: (6)'
 '01-Jan-2001' '11:00' [1]
 ' " ' '12:00' [2]
 '02-Jan-2001' '11:00' [3]
 ' " ' '12:00' [NaN]
 '03-Jan-2001' '11:00' [NaN]
 ' " ' '12:00' [6]

Example 1. Fill the missing data in OpenFts using cubic interpolation.

FilledFts = fillts(OpenFts,'cubic')

FilledFts =

 desc: Filled Open Financial Time Series
 freq: Unknown (0)

fillts

5-56

 'dates: (6)' 'times: (6)' 'Data1: (6)'
 '01-Jan-2001' '11:00' [1]
 ' " ' '12:00' [2]
 '02-Jan-2001' '11:00' [3]
 ' " ' '12:00' [3.0663]
 '03-Jan-2001' '11:00' [5.8411]
 ' " ' '12:00' [6.0000]

Example 2. Fill the missing data in OpenFts with a constant value.

FilledFts = fillts(OpenFts,0.3)

FilledFts =

 desc: Filled Open Financial Time Series
 freq: Unknown (0)

 'dates: (6)' 'times: (6)' 'Data1: (6)'
 '01-Jan-2001' '11:00' [1]
 ' " ' '12:00' [2]
 '02-Jan-2001' '11:00' [3]
 ' " ' '12:00' [0.3000]
 '03-Jan-2001' '11:00' [0.3000]

 ' " ' '12:00' [6]

Example 3. You can use fillts to identify a specific time on a specific day for
the replacement of missing data. This example shows how to replace missing
data at 12:00 on January 2 and 11:00 on January 3.

FilltimeFts = fillts(OpenFts,'c',...
{'02-Jan-2001';'03-Jan-2001'}, {'12:00';'11:00'},0)

FilltimeFts =

 desc: Filled Open Financial Time Series
 freq: Unknown (0)

 'dates: (6)' 'times: (6)' 'Data1: (6)'
 '01-Jan-2001' '11:00' [1]
 ' " ' '12:00' [2]

fillts

5-57

 '02-Jan-2001' '11:00' [3]
 ' " ' '12:00' [3.0663]
 '03-Jan-2001' '11:00' [5.8411]
 ' " ' '12:00' [6.0000]

Example 4. Use a spanning time interval to add an additional day to OpenFts.

SpanFts = fillts(OpenFts,'c','04-Jan-2001','span',...
{'11:00';'12:00'},60,0)

SpanFts =

 desc: Filled Open Financial Time Series
 freq: Unknown (0)

 'dates: (8)' 'times: (8)' 'Data1: (8)'
 '01-Jan-2001' '11:00' [1]
 ' " ' '12:00' [2]
 '02-Jan-2001' '11:00' [3]
 ' " ' '12:00' [3.0663]
 '03-Jan-2001' '11:00' [5.8411]
 ' " ' '12:00' [6.0000]
 '04-Jan-2001' '11:00' [9.8404]
 ' " ' '12:00' [9.9994]

See Also interp1 in the MATLAB documentation

filter

5-58

5filterPurpose Linear filtering

Syntax newfts = filter(B, A, oldfts)

Description filter filters an entire financial time series object with certain filter
specifications. The filter is specified in a transfer function expression.

newfts = filter(B, A, oldfts) filters the data in the financial time series
object oldfts with the filter described by vectors A and B to create the new
financial time series object newfts. The filter is a “Direct Form II Transposed”
implementation of the standard difference equation. newfts is a financial time
series object containing the same data series (names) as the input oldfts.

See Also filter, filter2 in the MATLAB documentation

fints

5-59

5fintsPurpose Construct financial time series object

Syntax tsobj = fints(dates_and_data)
tsobj = fints(dates, data)
tsobj = fints(dates, data, datanames)
tsobj = fints(dates, data, datanames, freq)
tsobj = fints(dates, data, datanames, freq, desc)

Arguments dates_and_data Column-oriented matrix containing one column of
dates and a single column for each series of data. In
this format, dates must be entered in serial date
number format. If the input serial date numbers
encode time-of-day information, the output object
contains a column labeled 'dates' containing the date
information and another labeled 'times' containing
the time information.

You can use the function today to enter date
information or the function now to enter date with time
information.

fints

5-60

dates Column vector of dates. Dates can be date strings or
serial date numbers and can include time of day
information. When entering time-of-day information
as serial date numbers, the entry must be a
column-oriented matrix when multiple entries are
present. If the time-of-day information is in string
format, the entry must be a column-oriented cell array
of dates and times when multiple entries are present.
Valid date and time string formats are

• 'ddmmmyy hh:mm' or 'ddmmmyyyy hh:mm'

• 'mm/dd/yy hh:mm' or 'mm/dd/yyyy hh:mm'

• 'dd-mmm-yy hh:mm' or 'dd-mmm-yyyy hh:mm'

• 'mmm.dd,yy hh:mm' or 'mmm.dd,yyyy hh:mm'

Dates and times can initially be separate
column-oriented vectors, but they must be
concatenated into a single column-oriented matrix
before being passed to fints.

You can use the MATLAB functions today and now to
assist in entering date and time information.

data Column-oriented matrix containing a column for each
series of data. The number of values in each data
series must match the number of dates. If a mismatch
occurs, MATLAB does not generate the financial time
series object, and you receive an error message.

datanames Cell array of data series names. Overrides the default
data series names. Default data series names are
series1, series2,

fints

5-61

Note The toolbox only supports hourly and minute time series. Seconds are
disregarded when the object is created (e.g., 01-jan-2001 12:00:01 is
considered to be 01-jan-2001 12:00). If there are duplicate dates and times,
fints sorts the dates and times and chooses the first instance of the duplicate
dates and times. The other duplicate dates and times are removed from the
object along with their corresponding data.

Description fints constructs a financial time series object. A financial time series object is
a MATLAB object that contains a series of dates and one or more series of data.
Before you perform an operation on the data, you must set the frequency
indicator (freq). You can optionally provide a description (desc) for the time
series.

tsobj = fints(dates_and_data) creates a financial time series object
containing the dates and data from the matrix dates_and_data. If the dates
contain time-of-day information, the object contains an additional series of
times. The date series and each data series must each be a column in the input
matrix. The names of the data series default to series1, ..., seriesn. The
desc and freq fields are set to their defaults.

tsobj = fints(dates, data) generates a financial time series object
containing dates from the dates column vector of dates and data from the
matrix data. If the dates contain time-of-day information, the object contains

freq Frequency indicator. Allowed values are
UNKNOWN, Unknown, unknown, U, u,0
DAILY, Daily, daily, D, d,1
WEEKLY, Weekly, weekly, W, w,2
MONTHLY, Monthly, monthly, M, m, 3
QUARTERLY, Quarterly, quarterly, Q, q,4
SEMIANNUAL, Semiannual, semiannual, S, s,5
ANNUAL, Annual, annual, A, a, 6
Default = Unknown.

desc String providing descriptive name for financial time
series object. Default = '' .

fints

5-62

an additional series of times. The data matrix must be column-oriented, that
is, each column in the matrix is a data series. The names of the series default
to series1, ..., seriesn, where n is the total number of columns in data.
The desc and freq fields are set to their defaults.

tsobj = fints(dates, data, datanames) additionally allows you to rename
the data series. The names are specified in the datanames cell array. The
number of strings in datanames must correspond to the number of columns in
data. The desc and freq fields are set to their defaults.

tsobj = fints(dates, data, datanames, freq) additionally sets the
frequency when you create the object. The desc field is set to its default ''.

tsobj = fints(dates, data, datanames, freq, desc) provides a
description string for the financial time series object.

Examples Example 1: Create a financial time series containing days and data only:

data = [1:6]'

data =

 1
 2
 3
 4
 5
 6

dates = [today:today+5]'

dates =

 731132
 731133
 731134
 731135
 731136
 731137

fints

5-63

tsobjkt = fints(dates, data)

tsobjkt =

 desc: (none)
 freq: Unknown (0)

 'dates: (6)' 'series1: (6)'
 '08-Oct-2001' [1]
 '09-Oct-2001' [2]
 '10-Oct-2001' [3]
 '11-Oct-2001' [4]
 '12-Oct-2001' [5]
 '13-Oct-2001' [6]

Example 2. Expand the above example to include time-of-day information:

dates = [now:now+5]';

tsobjkt = fints(dates, data)

tsobjkt =

 desc: (none)
 freq: Unknown (0)

 'dates: (6)' 'times: (6)' 'series1: (6)'
 '08-Oct-2001' '14:51' [1]
 '09-Oct-2001' '14:51' [2]
 '10-Oct-2001' '14:51' [3]
 '11-Oct-2001' '14:51' [4]
 '12-Oct-2001' '14:51' [5]
 '13-Oct-2001' '14:51' [6]

Example 3. Create a financial time series object when dates and times are
located in separate vectors.

Step 1. Create a column vector of times in date number format:

times = datenum(datestr(now:1/24+1/24/60:now+6/24+1/24/60,15))

times =

fints

5-64

 0.43750000000000
 0.47986111111111
 0.52222222222222
 0.56458333333333
 0.60694444444444
 0.64930555555556

Step 2. Create a column vector of dates:

dates = [today:today+5]'

dates =

 731133
 731134
 731135
 731136
 731137
 731138

Step 3. Concatenate dates and times into a single matrix:

dates_times = [dates, times]

dates_times =

 1.0e+005 *

 7.31133000000000 0.00000437500000
 7.31134000000000 0.00000479861111
 7.31135000000000 0.00000522222222
 7.31136000000000 0.00000564583333
 7.31137000000000 0.00000606944444
 7.31138000000000 0.00000649305556

Step 4. Create column vector of data:

data = [1:6]'

fints

5-65

Step 5. Create the financial time series object:

tsobj = fints(dates_times, data)

tsobj =

 desc: (none)
 freq: Unknown (0)

 'dates: (6)' 'times: (6)' 'series1: (6)'
 '09-Oct-2001' '10:30' [1]
 '10-Oct-2001' '11:31' [2]
 '11-Oct-2001' '12:32' [3]
 '12-Oct-2001' '13:33' [4]
 '13-Oct-2001' '14:34' [5]
 '14-Oct-2001' '15:35' [6]

See Also datenum, datestr in the Financial Toolbox documentation

fintsver

5-66

5fintsverPurpose Determine version

Syntax ftsver = fintsver(tsobj)
[ftsver, timedata} = fintsver(tsobj)

Arguments

Description ftsver = fintsver(tsobj) determines if tsobj is an object from the
Financial Time Series Toolbox Version 2.0 or earlier. ftsver = 1 indicates that
tsobj is an object from Financial Time Series Toolbox Version 1.0 or 1.1.
ftsver = 2 indicates that tsobj is an object from Version 2 of the toolbox.
Version 2 objects can contain time-of-day data.

[ftsver, timedata] = fintsver(tsobj) additionally indicates if tsobj
contains time information. timedata = 0 indicates no time information is
present. timedata = 1 indicates that time information is present.

Examples Determine the version number and whether time information is present in the
Disney stock price financial time series object:

load disney.mat
[ftsver, timedata] = fintsver(dis)

ftsver =

 1

timedata =

 0

tsobj Financial time series object

fpctkd

5-67

5fpctkdPurpose Fast stochastics

Syntax [pctk, pctd] = fpctkd(highp, lowp, closep)
[pctk, pctd] = fpctkd([highp lowp closep])
[pctk, pctd] = fpctkd(highp, lowp, closep, kperiods, dperiods,

dmamethod)
[pctk, pctd] = fpctkd([highp lowp closep], kperiods, dperiods,

dmamethod)
pkdts = fpctkd(tsobj, kperiods, dperiods, dmamethod)
pkdts = fpctkd(tsobj, kperiods, dperiods, dmamethod, ParameterName,

ParameterValue, ...)

Arguments

Description fpctkd calculates the stochastic oscillator.

[pctk, pctd] = fpctkd(highp, lowp, closep) calculates the fast
stochastics F%K and F%D from the stock price data highp (high prices), lowp
(low prices), and closep (closing prices).

[pctk, pctd] = fpctkd([highp lowp closep]) accepts a three-column
matrix of high (highp), low (lowp), and closing prices (closep), in that order.

[pctk, pctd] = fpctkd(highp, lowp, closep, kperiods, dperiods,
dmamethod) calculates the fast stochastics F%K and F%D from the stock price
data highp (high prices), lowp (low prices), and closep (closing prices).
kperiods sets the %K period. dperiods sets the %D period.

highp High price (vector)

lowp Low price (vector)

closep Closing price (vector)

kperiods (Optional) %K periods. Default = 10.

dperiods (Optional) %D periods. Default = 3.

damethod (Optional) %D moving average method. Default = 'e'
(exponential).

tsobj Financial time series object

fpctkd

5-68

damethod specifies the %D moving average method. Valid moving average
methods for %D are Exponential ('e') and Triangular ('t'). See tsmovavg for
explanations of these methods.

[pctk, pctd]= fpctkd([highp lowp closep], kperiods, dperiods,
dmamethod) accepts a three-column matrix of high (highp), low (lowp), and
closing prices (closep), in that order.

pkdts = fpctkd(tsobj, kperiods, dperiods, dmamethod) calculates the
fast stochastics F%K and F%D from the stock price data in the financial time
series object tsobj. tsobj must minimally contain the series High (high prices),
Low (low prices), and Close (closing prices). pkdts is a financial time series
object with similar dates to tsobj and two data series named PercentK and
PercentD.

pkdts = fpctkd(tsobj, kperiods, dperiods, dmamethod, ParameterName,
ParameterValue, ...) accepts parameter name/parameter value pairs as
input. These pairs specify the name(s) for the required data series if it is
different from the expected default name(s). Valid parameter names are:

• HighName: high prices series name

• LowName: low prices series name

• CloseName: closing prices series name

Parameter values are the strings that represent the valid parameter names.

fpctkd

5-69

Examples Compute the stochastic oscillator for Disney stock and plot the results:

load disney.mat
dis_FastStoc = fpctkd(dis)
plot(dis_FastStoc)
title('Stochastic Oscillator for Disney')

See Also spctkd, stochosc, tsmovavg

Reference Achelis, Steven B., Technical Analysis from A To Z, Second printing,
McGraw-Hill, 1995, pp. 268 - 271.

freqnum

5-70

5freqnumPurpose Convert string frequency indicator to numeric frequency indicator

Syntax nfreq = freqnum(sfreq)

Arguments

Description nfreq = freqnum(sfreq) converts a string frequency indicator into a numeric
value.

See Also freqstr

sfreq UNKNOWN, Unknown, unknown, U, u
DAILY, Daily, daily, D, d
WEEKLY, Weekly, weekly, W, w
MONTHLY, Monthly, monthly, M, m
QUARTERLY, Quarterly, quarterly, Q, q
SEMIANNUAL, Semiannual, semiannual, S, s
ANNUAL, Annual, annual, A, a

String Frequency Indicator Numeric Representation

UNKNOWN, Unknown, unknown, U, u 0

DAILY, Daily, daily, D, d 1

WEEKLY, Weekly, weekly, W, w 2

MONTHLY, Monthly, monthly, M, m 3

QUARTERLY, Quarterly, quarterly, Q, q 4

SEMIANNUAL, Semiannual, semiannual, S, s 5

ANNUAL, Annual, annual, A, a 6

freqstr

5-71

5freqstrPurpose Convert numeric frequency indicator to string representation

Syntax sfreq = freqstr(nfreq)

Arguments

Description sfreq = freqstr(nfreq) converts a numeric frequency indicator into a string
representation.

See Also freqnum

nfreq 0
1
2
3
4
5
6

Numeric Frequency Indicator String Representation

0 Unknown

1 Daily

2 Weekly

3 Monthly

4 Quarterly

5 Semiannual

6 Annual

fts2ascii

5-72

5fts2asciiPurpose Write elements of time series data into an ASCII file

Syntax stat = fts2ascii(filename, tsobj, exttext)
stat = fts2ascii(filename, dates, data, colheads, desc, exttext)

Arguments

Description stat = fts2ascii(filename, tsobj, exttext) writes the financial time
series object tsobj into an ASCII file filename. The data in the file is tab
delimited.

stat = fts2ascii(filename, dates, data, colheads, desc, exttext)
writes into an ASCII file filename the dates, times, and data contained in the
column vector dates and the column-oriented matrix data. The first column in
filename contains the dates, followed by times (if specified). Subsequent
columns contain the data. The data in the file is tab delimited.

stat indicates whether file creation is successful (1) or not (0).

See Also ascii2fts

filename Name of an ASCII file

tsobj Financial time series object

exttext (Optional) Extra text. A string written after the
description line (line 2 in the file).

dates Column vector containing dates. Dates must be in
serial date number format and can specify time of day.

data Column-oriented matrix. Each column is a series.

colheads (Optional) Cell array of column headers (names); first
cell must always be the one for the dates column.
colheads will be written to the file just before the
data.

desc (Optional) Description string, which will be the first
line in the file.

fts2mat

5-73

5fts2matPurpose Convert to matrix

Syntax tsmat = fts2mat(tsobj)
tsmat = fts2mat(tsobj, datesflag)
tsmat = fts2mat(tsobj, seriesnames)
tsmat = fts2mat(tsobj, datesflag, seriesnames)

Arguments

Description tsmat = fts2mat(tsobj) takes the data series in the financial time series
object tsobj and puts them into the matrix tsmat as columns. The order of the
columns is the same as the order of the data series in the object tsobj.

tsmat = fts2mat(tsobj, datesflag) specifies whether or not you want the
dates vector included. The dates vector will be the first column. The dates are
represented as serial date numbers. Dates can include time-of-day
information.

tsmat = fts2mat(tsobj, seriesnames) extracts the data series named in
seriesnames and puts its values into tsmat. The seriesnames argument can be
a cell array of strings.

tsmat = fts2mat(tsobj, datesflag, seriesnames) puts into tsmat the
specific data series named in seriesnames. The datesflag argument must be
specified. If datesflag is set to 1, the dates vector is included. If you specify an
empty matrix ([]) for datesflag, the default behavior is adopted.

See Also subsref

tsobj Financial time series object

datesflag (Optional) Specifies inclusion of dates vector:
datesflag = 0 (default) excludes dates.
datesflag = 1 includes dates vector.

seriesnames (Optional) Specifies the data series to be included in
the matrix. Can be a cell array of strings.

ftsbound

5-74

5ftsboundPurpose Start and end dates

Syntax datesbound = ftsbound(tsobj)
datesbound = ftsbound(tsobj, dateform)

Arguments

Description ftsbound returns the start and end dates of a financial time series object. If the
object contains time-of-day data, ftsbound additionally returns the starting
time on the first date and the ending time on the last date.

datesbound = ftsbound(tsobj) returns the start and end dates contained in
tsobj as serial dates in the column matrix datesbound. The first row in
datesbound corresponds to the start date, and the second corresponds to the
end date.

datesbound = ftsbound(tsobj, dateform) returns the starting and ending
dates contained in the object, tsobj, as date strings in the column matrix,
datesbound. The first row in datesbound corresponds to the start date, and the
second corresponds to the end date. The dateform argument controls the
format of the output dates.

See Also datestr in the Financial Toolbox documentation

tsobj Financial time series object

dateform dateform is an integer representing the format of a
date string. See datestr for a description of these
formats.

ftsgui

5-75

5ftsguiPurpose Financial time series graphical user interface

Syntax ftsgui

Description ftsgui displays the financial time series graphical user interface (GUI) main
window.

The use of the Financial Time Series GUI is described in Chapter 4, “Graphical
User Interface.”

Example ftsgui

ftsinfo

5-76

5ftsinfoPurpose Financial time series object information

Syntax ftsinfo(tsobj)
infofts = ftsinfo(tsobj)

Arguments

Description ftsinfo(tsobj) displays information about the financial time series object
tsobj.

infofts = ftsinfo(tsobj) stores information about the financial time series
object tsobj in the structure infofts.

infofts has these fields.

Examples Convert the supplied file disney.dat into a financial time series object named
dis:

dis = ascii2fts('disney.dat', 1, 3);

tsobj Financial time series object

Field Contents

version Financial time series object version

desc Description of the time series object (tsobj.desc)

freq Numeric representation of the time series data frequency
(tsobj.freq). See freqstr for list of numeric frequencies
and what they represent.

startdate Earliest date in the time series

enddate Latest date in the time series

seriesnames Cell array containing the time series data column names

ndata Number of data points in the time series

nseries Number of columns of time series data

ftsinfo

5-77

Now use ftsinfo to obtain information about dis:

ftsinfo(dis)

FINTS version: 2.0
Description: Walt Disney Company (DIS)

 Frequency: Unknown
 Start date: 29-Mar-1996
 End date: 29-Mar-1999
 Series names: OPEN
 HIGH
 LOW
 CLOSE
 VOLUME
 # of data: 782
 # of series: 5

Then, executing

infodis = ftsinfo(dis)

creates the structure infodis containing the values

infodis =

ver: '2.0'
 desc: 'Walt Disney Company (DIS)'
 freq: 0
 startdate: '29-Mar-1996'
 enddate: '29-Mar-1999'
 seriesnames: {5x1 cell}
 ndata: 782
 nseries: 5

See Also fints, freqnum, freqstr, ftsbound

ftsnew2old

5-78

5ftsnew2oldPurpose Convert Version 2 time series object to Version 1

Syntax ftsno = ftsnew2old(tsobj2)

Arguments

Description ftsno = ftsnew2old(tsobj2) converts a financial time series object from a
Financial Time Series Toolbox Version 2 object to an object compatible with
Version 1.

See Also ftsold2new

tsobj2 Financial Time Series Toolbox (Version 2) object.
(Version 2 objects can contain a time data field.)

ftsold2new

5-79

5ftsold2newPurpose Convert Version 1 time series object to Version 2

Syntax ftsno = ftsnew2old(tsobj1)

Arguments

Description ftsno = ftsnew2old(tsobj1) converts a financial time series object from a
Financial Time Series Toolbox Version 1 object to an object compatible with
Version 2.

See Also ftsnew2old

tsobj1 Financial Time Series Toolbox (Version 1) object.
(Version 1 objects cannot contain a time data field.)

ftstool

5-80

5ftstoolPurpose Create, display, and modify financial time series objects

Syntax ftstool

Description ftstool displays the financial time series manager graphical user interface
(GUI).

The Financial Time Series Tool is described in Chapter 5, “Financial Time
Series Tool (FTSTool)”.

ftstool

5-81

Example ftstool

ftsuniq

5-82

5ftsuniqPurpose Determine uniqueness

Syntax uniq = ftsuniq(dates_and_times)
[uniq, dup] = ftsuniq(dates_and_times)

Arguments

Description uniq = ftsuniq(dates_and_times) returns 1 if the dates and times within
the financial time series object are unique and 0 if duplicates exist.

[uniq, dup] = ftsuniq(dates_and_times) additionally returns a structure
dup. In the structure

• dup.dt contains the strings of the duplicate dates and times and their
locations in the object.

• dup.intidx contains the integer indices of duplicate dates and times in the
object.

See Also fints

dates_and_times A single column vector of serial date numbers. The
serial date numbers can include time-of-day
information.

getfield

5-83

5getfieldPurpose Get content of a specific field

Syntax fieldval = getfield(tsobj, field)
fieldval = getfield(tsobj, field, {dates})

Arguments

Description getfield treats the contents of a financial times series object tsobj as fields in
a structure.

fieldval = getfield(tsobj, field) returns the contents of the specified
field. This is equivalent to the syntax fieldval = tsobj.field.

fieldval = getfield(tsobj, field, {dates}) returns the contents of the
specified field for the specified dates. dates can be individual cells of date
strings or a cell of a date string range using the :: operator, such as
'03/01/99::03/31/99'.

Examples Create a financial time series object containing both date and time-of-day
information:

dates = ['01-Jan-2001';'01-Jan-2001'; '02-Jan-2001'; ...
'02-Jan-2001'; '03-Jan-2001';'03-Jan-2001'];

times = ['11:00';'12:00';'11:00';'12:00';'11:00';'12:00'];
dates_times = cellstr([dates, repmat(' ',size(dates,1),1),...
times]);
AnFts = fints(dates_times,[(1:4)'; nan; 6],{'Data1'},1,...

'Yet Another Financial Time Series')

tsobj Financial time series object

field Field name within tsobj

dates Date range. Dates can be expanded to include
time-of-day information.

getfield

5-84

AnFts =

desc: Yet Another Financial Time Series
 freq: Daily (1)

 'dates: (6)' 'times: (6)' 'Data1: (6)'
 '01-Jan-2001' '11:00' [1]
 ' " ' '12:00' [2]
 '02-Jan-2001' '11:00' [3]
 ' " ' '12:00' [4]
 '03-Jan-2001' '11:00' [NaN]
 ' " ' '12:00' [6]

Example 1. Get the contents of the times field in AnFts:

F = datestr(getfield(AnFts, 'times'))

F =

11:00 AM
12:00 PM
11:00 AM
12:00 PM
11:00 AM
12:00 PM

Example 2. Extract the contents of specific data fields within AnFts:

FF = getfield(AnFts,'Data1',...
'01-Jan-2001 12:00::02-Jan-2001 12:00')

FF =

 2
 3
 4

See Also chfield, fieldnames, isfield, rmfield, setfield

getnameidx

5-85

5getnameidxPurpose Find name in list

Syntax nameidx = getnameidx(list, name)

Arguments

Description nameidx = getnameidx(list, name) finds the occurrence of a name or set of
names in a list. It returns an index (order number) indicating where the
specified names are located within the list. If name is not found, nameidx
returns 0.

If name is a cell array of names, getnameidx returns a vector containing the
indices (order number) of the name strings within list. If none of the names in
the name cell array is in list, it returns zero. If some of the names in name are
not found, the indices for these names will be zeros.

getnameidx finds only the first occurrence of the name in the list of names.
This function is meant to be used on a list of unique names (strings) only. It
does not find multiple occurrences of a name or a list of names within list.

Examples Given

poultry = {'duck', 'chicken'}
animals = {'duck', 'cow', 'sheep', 'horse', 'chicken'}
nameidx = getnameidx(animals, poultry)

ans =
1 5

Given

poultry = {'duck', 'goose', 'chicken'}
animals = {'duck', 'cow', 'sheep', 'horse', 'chicken'}
nameidx = getnameidx(animals, poultry)

ans =
1 0 5

See Also findstr, strcmp, strfind

list A cell array of name strings

name A string or cell array of name strings

hhigh

5-86

5hhighPurpose Highest high

Syntax hhv = hhigh(data)
hhv = hhigh(data, nperiods, dim)
hhvts = hhigh(tsobj, nperiods)
hhvts = hhigh(tsobj, nperiods, ParameterName, ParameterValue)

Arguments

 Description hhv = hhigh(data) generates a vector of highest high values the past 14
periods from the matrix data.

hhv = hhigh(data, nperiods, dim) generates a vector of highest high
values the past nperiods periods. dim indicates the direction in which the
highest high is to be searched. If you input [] for nperiods, the default is 14.

hhvts = hhigh(tsobj, nperiods) generates a vector of highest high values
from tsobj, a financial time series object. tsobj must include at least the series
High. The output hhvts is a financial time series object with the same dates as
tsobj and data series named HighestHigh. If nperiods is specified, hhigh
generates a financial time series object of highest high values for the past
nperiods periods.

hhvts = hhigh(tsobj, nperiods, ParameterName, ParameterValue)
specifies the name for the required data series when it is different from the
default name. The valid parameter name is:

• HighName: high prices series name

The parameter value is a string that represents the valid parameter name.

data Data series matrix

nperiods (Optional) Number of periods. Default = 14.

dim (Optional) Dimension

tsobj Financial time series object

hhigh

5-87

Example Compute the highest high prices for Disney stock and plot the results:

load disney.mat
dis_HHigh = hhigh(dis)
plot(dis_HHigh)
title('Highest High for Disney')

See Also llow

highlow

5-88

5highlowPurpose High-Low plot

Syntax highlow(tsobj)
highlow(tsobj, color)
highlow(tsobj, color, dateform)
highlow(tsobj, color, dateform, ParameterName, ParameterValue, ...)
hhll = highlow(tsobj, color, dateform, ParameterName,

ParameterValue, ...)

Arguments

Description highlow(tsobj) generates a High-Low plot of the data in the financial time
series object tsobj. tsobj must contain at least four data series representing
the high, low, open, and closing prices. These series must have the names High,
Low, Open, and Close (case-insensitive).

highlow(tsobj, color) additionally specifies the color of the plot.

highlow(tsobj, color, dateform) additionally specifies the date string
format used as the x-axis tick labels. See datestr in the Financial Toolbox
documentation for a list of date string formats.

highlow(tsobj, color, dateform, ParameterName, ParameterValue,...)
indicates the actual name(s) of the required data series if the data series do not
have the default names. ParameterName can be

• HighName: high prices series name

• LowName: low prices series name

• OpenName: open prices series name

tsobj Financial time series object

color (Optional) A three-element row vector representing
RGB or a color identifier. (See plot in the MATLAB
documentation.)

dateform (Optional) Date string format used as the x-axis tick
labels. (See datetick in the MATLAB documentation.)
You can specify a dateform only when tsobj does not
contain time-of-day data. If tsobj contains time-of-day
data, dateform is restricted to 'dd-mmm-yyyy HH:MM'.

highlow

5-89

• CloseName: closing prices series name

You can specifiy open prices as optional by providing the parameter name
'OpenName' and the parameter value '' (empty string).

highlow(tsobj, color, dateform, 'OpenName', '')

hhll = highlow(tsobj, color, dateform, ParameterName,
ParameterValue, ...) returns the handle to the line object that makes up the
High-Low plot.

Examples Generate a High-Low plot for Disney stock for the dates from May 28 to June
18, 1998:

load disney.mat
highlow(dis('28-May-1998::18-Jun-1998'))
title(`High-Low Plot for Disney')

See Also candle

highlow

5-90

highlow in the Financial Toolbox documentation

datetick and plot in the MATLAB documentation

hist

5-91

5histPurpose Histogram

Syntax hist(tsobj, numbins)
ftshist = hist(tsobj, numbins)
[ftshist, binpos] = hist(tsobj, numbins)

Arguments

Description hist(tsobj, numbins) calculates and displays the histogram of the data
series contained in the financial time series object tsobj.

ftshist = hist(tsobj, numbins) calculates, but does not display, the
histogram of the data series contained in the financial time series object tsobj.
The output ftshist is a structure with field names similar to the data series
names of tsobj.

[ftshist, binpos] = hist(tsobj, numbins) additionally returns the bin
positions binpos. The positions are the centers of each bin. binpos is a column
vector.

Example Create a histogram of Disney open, high, low, and close prices:

load disney.mat
dis = rmfield(dis,'VOLUME') % Remove VOLUME field
hist(dis)
title('Disney Histogram')

tsobj Financial time series object

numbins (Optional) Number of histogram bins. Default = 10.

hist

5-92

See Also mean, std

hist in the MATLAB documentation

horzcat

5-93

5horzcat Purpose Concatenate financial time series objects horizontally

Description horzcat implements horizontal concatenation of financial time series objects.
horzcat essentially merges the data columns of the financial time series
objects. The time series objects must contain the exact same dates and times.

When multiple instances of a data series name occur, concatenation adds a
suffix to the current names of the data series. The suffix has the format
_objectname<n>, where n is a number indicating the position of the time series,
from left to right, in the concatenation command. The n part of the suffix
appears only when there is more than one instance of a particular data series
name.

The description fields are concatenated as well. They are separated by two
forward slashes (//).

Examples Construct three financial time series, each containing a data series named
DataSeries:

firstfts = fints((today:today+4)', (1:5)','DataSeries','d');
secondfts = fints((today:today+4)', (11:15)','DataSeries','d');
thirdfts = fints((today:today+4)', (21:25)','DataSeries','d');

Concatenate the time series horizontally into a new financial time series
newfts.

newfts = [firstfts secondfts thirdfts secondfts];

The resulting object newfts has data series names DataSeries_firstfts,
DataSeries_secondfts2, DataSeries_thirdfts, and
DataSeries_secondfts4.

Verify this with the command

fieldnames(newfts)

ans =

'desc'
'freq'
'dates'
'DataSeries_firstfts'

horzcat

5-94

'DataSeries_secondfts2'
'DataSeries_thirdfts'
'DataSeries_secondfts4'
'times'

 Use chfield to change the data series names.

Note If all input objects have the same frequency, the new object has that
frequency as well. However, if one of the objects concatenated has a different
frequency from the others, the frequency indicator of the resulting object is set
to Unknown (0).

See Also vertcat

iscompatible

5-95

5iscompatiblePurpose Structural equality

Syntax iscomp = iscompatible(tsobj_1, tsobj_2)

Arguments

Description iscomp = iscompatible(tsobj_1, tsobj_2) returns 1 if both financial time
series objects tsobj_1 and tsobj_2 have the same dates and data series
names. It returns 0 if any component is different.

iscomp = 1 indicates that the two objects contain the same number of data
points as well as equal number of data series. However, the values contained
in the data series can be different.

Note Data series names are case sensitive.

 See Also isequal

tsobj_1, tsobj_2 A pair of financial time series objects

isequal

5-96

5isequalPurpose Multiple object equality

Syntax iseq = isequal(tsobj_1, tsobj_2, ...)

Arguments

Description iseq = isequal(tsobj_1, tsobj_2, ...) returns 1 if all listed financial
time series objects have the same dates, data series names, and values
contained in the data series. It returns 0 if any of those components is different.

Note Data series names are case sensitive.

iseq = 1 implies that each object contains the same number of dates and the
same data. Only the descriptions can differ.

See Also iscompatible

tsobj_1 ... A list of financial time series objects

isfield

5-97

5isfieldPurpose Check if string is a field name

Syntax F = isfield(tsobj, name)

Description F = isfield(tsobj, name) returns true (1) if name is the name of a data series
in tsobj. Otherwise, isfield returns false (0).

See Also fieldnames, getfield, setfield

issorted

5-98

5issortedPurpose Check if dates and times are monotonically increasing

Syntax monod = issorted(tsobj)

Arguments

Description monod = issorted(tsobj) returns 1 if the dates and times in tsobj are
monotonically increasing or 0 if they are not.

See Also sortfts

tsobj Financial time series object

lagts

5-99

5lagtsPurpose Lag time series object

Syntax newfts = lagts(oldfts)
newfts = lagts(oldfts, lagperiod)
newfts = lagts(oldfts, lagperiod, padmode)

Arguments

Description lagts delays a financial time series object by a specified time step.

newfts = lagts(oldfts) delays the data series in oldfts by one time series
date entry and returns the result in the object newfts. The end will be padded
with zeros, by default.

newfts = lagts(oldfts, lagperiod) shifts time series values to the right on
an increasing time scale. lagts delays the data series to happen at a later time.
lagperiod is the number of lag periods expressed in the frequency of the time
series object oldfts. For example, if oldfts is a daily time series, lagperiod is
specified in days. lagts pads the data with zeros (default).

newfts = lagts(oldfts, lagperiod, padmode) lets you pad the data with
an arbitrary value, NaN, or Inf rather than zeros by setting padmode to the
desired value.

See Also leadts

oldfts Financial time series object

lagperiod Number of lag periods expressed in the frequency of
the time series object

padmode Data padding value

leadts

5-100

5leadtsPurpose Lead time series object

Syntax newfts = leadts(oldfts)
newfts = leadts(oldfts, leadperiod)
newfts = leadts(oldfts, leadperiod, padmode)

Arguments

Description leadts advances a financial time series object by a specified time step.

newfts = leadts(oldfts) advances the data series in oldfts by one time
series date entry and returns the result in the object newfts. The end will be
padded with zeros, by default.

newfts = leadts(oldfts, leadperiod) shifts time series values to the left
on an increasing time scale. leadts advances the data series to happen at an
earlier time. leadperiod is the number of lead periods expressed in the
frequency of the time series object oldfts. For example, if oldfts is a daily
time series, leadperiod is specified in days. leadts pads the data with zeros
(default).

newfts = leadts(oldfts, leadperiod, padmode) lets you pad the data with
an arbitrary value, NaN, or Inf rather than zeros by setting padmode to the
desired value.

See Also lagts

oldfts Financial time series object

leadperiod Number of lead periods expressed in the frequency of
the time series object

padmode Data padding value

length

5-101

5lengthPurpose Get number of dates (rows)

Syntax lenfts = length(tsobj)

Description lenfts = length(tsobj) returns the number of dates (rows) in the financial
time series object tsobj. This is the same as issuing lenfts = size(tsobj, 1).

 See Also size

length in the MATLAB documentation

llow

5-102

5llowPurpose Lowest low

Syntax llv = llow(data)
llv = llow(data, nperiods, dim)
llvts = llow(tsobj, nperiods)
llvts = llow(tsobj, nperiods, ParameterName, ParameterValue)

Arguments

Description llv = llow(data) generates a vector of lowest low values for the past 14
periods from the matrix data.

llv = llow(data, nperiods, dim) generates a vector of lowest low values
for the past nperiods periods. dim indicates the direction in which the lowest
low is to be searched. If you input [] for nperiods, the default is 14.

llvts = llow(tsobj, nperiods) generates a vector of lowest low values from
tsobj, a financial time series object. tsobj must include at least the series Low.
The output llvts is a financial time series object with the same dates as tsobj
and data series named LowestLow. If nperiods is specified, llow generates a
financial time series object of lowest low values for the past nperiods periods.

llvts = llow(tsobj, nperiods, ParameterName, ParameterValue)
specifies the name for the required data series when it is different from the
default name. The valid parameter name is

• LowName: low prices series name

The parameter value is a string that represents the valid parameter name.

data Data series matrix

nperiods (Optional) Number of periods. Default = 14.

dim Dimension

tsobj Financial time series object

llow

5-103

Examples Compute the lowest low prices for Disney stock and plot the results.

load disney.mat
dis_LLow = llow(dis)
plot(dis_LLow)
title('Lowest Low for Disney')

See Also hhigh

log

5-104

5logPurpose Natural logarithm

Syntax newfts = log(tsobj)

Description newfts = log(tsobj) calculates the natural logarithm (log base e) of the data
series in a financial time series object tsobj. It returns another time series
object newfts containing the natural logarithms.

See Also exp, log2, log10

log2

5-105

5log2Purpose Base 2 logarithm

Syntax newfts = log2(tsobj)

Description newfts = log2(tsobj) calculates the base 2 logarithm of the data series in a
financial time series object tsobj. It returns another time series object newfts
containing the logarithms.

See Also exp, log, log10

log10

5-106

5log10Purpose Common logarithm

Syntax newfts = log10(tsobj)

Description newfts = log10(tsobj) calculates the common logarithm (base 10) of all the
data in the data series of the financial time series object tsobj and returns the
result in the object newfts.

See Also exp, log, log2

macd

5-107

5macdPurpose Moving Average Convergence/Divergence (MACD)

Syntax [macdvec, nineperma] = macd(data)
[macdvec, nineperma] = macd(data, dim)
macdts = macd(tsobj, series_name)

Arguments

Description [macdvec, nineperma] = macd(data) calculates the Moving Average
Convergence/Divergence (MACD) line, macdvec, from the data matrix, data, as
well as the nine-period exponential moving average, nineperma, from the
MACD line.
When the two lines are plotted, they can give you an indication of whether to
buy or sell a stock, when an overbought or oversold condition is occurring, and
when the end of a trend might occur.
The MACD is calculated by subtracting the 26-period (7.5%) exponential
moving average from the 12-period (15%) moving average. The 9-day (20%)
exponential moving average of the MACD line is used as the signal line. For
example, when the MACD and the 20% moving average line have just crossed
and the MACD line falls below the other line, it is time to sell.

[macdvec, nineperma] = macd(data, dim) lets you specify the orientation
direction for the input. If the input data is a matrix, you need to indicate
whether each row is a set of observations (dim = 2) or each column is a set of
observations (dim = 1, the default).

macdts = macd(tsobj, series_name) calculates the MACD line from the
financial time series tsobj, as well as the nine-period exponential moving
average from the MACD line. The MACD is calculated for the closing price
series in tsobj, presumed to have been named Close. The result is stored in
the financial time series object macdts. The macdts object has the same dates
as the input object tsobj and contains only two series, named MACDLine and

data Data matrix

dim Dimension. Default = 1 (column orientation).

tsobj Financial time series object

series_name Data series name

macd

5-108

NinePerMA. The first series contains the values representing the MACD line
and the second is the nine-period exponential moving average of the MACD
line.

Examples Compute the MACD for Disney stock and plot the results:

load disney.mat
dis_CloseMACD = macd(dis);
dis_OpenMACD = macd(dis, 'OPEN');
plot(dis_CloseMACD);
plot(dis_OpenMACD);
title('MACD for Disney')

See Also adline, willad

max

5-109

5maxPurpose Maximum value

Syntax tsmax = max(tsobj)

Description tsmax = max(tsobj) finds the maximum value in each data series in the
financial time series object tsobj and returns it in a structure tsmax. The
tsmax structure contains field name(s) identical to the data series name(s).

Note tsmax returns only the values and does not return the dates associated
with the values. The maximum values are not necessarily from the same date.

See Also min

mean

5-110

5meanPurpose Arithmetic average

Syntax tsmean = mean(tsobj)

Description tsmean = mean(tsobj) computes the arithmetic mean of all data in all series
in tsobj and returns it in a structure tsmean. The tsmean structure contains
field name(s) identical to the data series name(s).

See Also peravg, tsmovavg

medprice

5-111

5medpricePurpose Median price

Syntax mprc = medprice(highp, lowp)
mprc = medprice([highp lowp])
mprcts = medprice(tsobj)
mprcts = medprice(tsobj, ParameterName, ParameterValue, ...)

Arguments

Description mprc = medprice(highp, lowp) calculates the median prices mprc from the
high (highp) and low (lowp) prices. The median price is the average of the high
and low price for each period.

mprc = medprice([highp lowp]) accepts a two-column matrix as the input
rather than two individual vectors. The columns of the matrix represent the
high and low prices, in that order.

mprcts = medprice(tsobj) calculates the median prices of a financial time
series object tsobj. The object must minimally contain the series High and Low.
The median price is the average of the high and low price each period. mprcts
is a financial time series object with the same dates as tsobj and the data
series MedPrice.

mprcts = medprice(tsobj, ParameterName, ParameterValue, ...)
accepts parameter name/parameter value pairs as input. These pairs specify
the name(s) for the required data series if it is different from the expected
default name(s). Valid parameter names are

• HighName: high prices series name

• LowName: low prices series name

Parameter values are the strings that represent the valid parameter names.

highp High price (vector)

lowp Low price (vector)

tsobj Financial time series object

medprice

5-112

Examples Compute the median price for Disney stock and plot the results:

load disney.mat
dis_MedPrice = medprice(dis)
plot(dis_MedPrice)
title('Median Price for Disney')

Reference Achelis, Steven B., Technical Analysis from A To Z, Second printing,
McGraw-Hill, 1995, pp. 177 -178.

min

5-113

5minPurpose Minimum value

Syntax tsmin = min(tsobj)

Description tsmin = min(tsobj) finds the minimum value in each data series in the
financial time series object tsobj and returns it in the structure tsmin. The
tsmin structure contains field name(s) identical to the data series name(s).

Note tsmin returns only the values and does not return the dates associated
with the values. The minimum values are not necessarily from the same date.

See Also max

minus

5-114

5minusPurpose Financial time series subtraction

Syntax newfts = tsobj_1 - tsobj_2
newfts = tsobj - array
newfts = array - tsobj

Arguments

Description minus is an element by element subtraction of the components.

newfts = tsobj_1 - tsobj_2 subtracts financial time series objects. If an
object is to be subtracted from another object, both objects must have the same
dates and data series names, although the order need not be the same. The
order of the data series, when one financial time series object is subtracted
from another, follows the order of the first object.

newfts = tsobj - array subtracts an array element by element from a
financial time series object.

newfts = array - tsobj subtracts a financial time series object element by
element from an array.

See Also rdivide, plus, times

tsobj_1, tsobj_2 A pair of financial time series objects

array A scalar value or array with the number of rows equal
to the number of dates in tsobj and the number of
columns equal to the number of data series in tsobj

mrdivide

5-115

5mrdividePurpose Financial time series matrix division

Syntax newfts = tsobj_1 / tsobj_2
newfts = tsobj / array
newfts = array / tsobj

Arguments

Description The mrdivide method divides element by element the components of one
financial time series object by the components of the other. You can also divide
the whole object by an array or divide a financial time series object into an
array.

If an object is to be divided by another object, both objects must have the same
dates and data series names, although the order need not be the same. The
order of the data series, when an object is divided by another object, follows the
order of the first object.

newfts = tsobj_1 / tsobj_2 divides financial time series objects element by
element.

newfts = tsobj / array divides a financial time series object element by
element by an array.

newfts = array / tsobj divides an array element by element by a financial
time series object.

For financial time series objects, the mrdivide operation is identical to the
rdivide operation.

See Also minus, plus, rdivide, times

tsobj_1, tsobj_2 A pair of financial time series objects

array A scalar value or array with number of rows equal to
the number of dates in tsobj and number of columns
equal to the number of data series in tsobj.

mtimes

5-116

5mtimesPurpose Financial time series matrix multiplication

Syntax newfts = tsobj_1 * tsobj_2
newfts = tsobj * array
newfts = array * tsobj

Arguments

Description The mtimes method multiplies element by element the components of one
financial time series object by the components of the other. You can also
multiply the entire object by an array.

If an object is to be multiplied by another object, both objects must have the
same dates and data series names, although the order need not be the same.
The order of the data series, when an object is multiplied by another object,
follows the order of the first object.

newfts = tsobj_1 * tsobj_2 multiplies financial time series objects element
by element.

newfts = tsobj * array multiplies a financial time series object element by
element by an array.

newfts = array * tsobj newfts = array / tsobj multiplies an array
element by element by a financial time series object.

For financial time series objects, the mtimes operation is identical to the times
operation.

See Also mrdivide, minus, plus, times

tsobj_1, tsobj_2 A pair of financial time series objects

array A scalar value or array with number of rows equal to
the number of dates in tsobj and number of columns
equal to the number of data series in tsobj.

negvolidx

5-117

5negvolidxPurpose Negative volume index

Syntax nvi = negvolidx(closep, tvolume, initnvi)
nvi = negvolidx([closep tvolume], initnvi)
nvits = negvolidx(tsobj)
nvits = negvolidx(tsobj, initnvi, ParameterName, ParameterValue,

...)

Arguments

Description nvi = negvolidx(closep, tvolume, initnvi) calculates the negative
volume index from a set of stock closing prices (closep) and volume traded
(tvolume) data. nvi is a vector representing the negative volume index. If
initnvi is specified, negvolidx uses that value instead of the default (100).

nvi = negvolidx([closep tvolume], initnvi) accepts a two-column
matrix, the first column representing the closing prices (closep) and the
second representing the volume traded (tvolume). If initnvi is specified,
negvolidx uses that value instead of the default (100).

nvits = negvolidx(tsobj) calculates the negative volume index from the
financial time series object tsobj. The object must contain, at least, the series
Close and Volume. The nvits output is a financial time series object with dates
similar to tsobj and a data series named NVI. The initial value for the negative
volume index is arbitrarily set to 100.

nvits = negvolidx(tsobj, initnvi, ParameterName, ParameterValue,
...) accepts parameter name/ parameter value pairs as input. These pairs
specify the name(s) for the required data series if it is different from the
expected default name(s). Valid parameter names are

closep Closing price (vector)

tvolume Volume traded (vector)

initnvi (Optional) Initial value for negative volume index
(Default = 100).

tsobj Financial time series object

negvolidx

5-118

• CloseName: closing prices series name

• VolumeName: volume traded series name

Parameter values are the strings that represent the valid parameter names.

Examples Compute the negative volume index for Disney stock and plot the results:

load disney.mat
dis_NegVol = negvolidx(dis)
plot(dis_NegVol)
title('Negative Volume Index for Disney')

See Also onbalvol, posvolidx

Reference Achelis, Steven B., Technical Analysis from A To Z, Second printing,
McGraw-Hill, 1995, pp. 193 - 194.

onbalvol

5-119

5onbalvolPurpose On-Balance Volume (OBV)

Syntax obv = onbalvol(closep, tvolume)
obv = onbalvol([closep tvolume])
obvts = onbalvol(tsobj)
obvts = onbalvol(tsobj, ParameterName, ParameterValue, ...)

Arguments

Description obv = onbalvol(closep, tvolume) calculates the On-Balance Volume (OBV)
from the stock closing price (closep) and volume traded (tvolume) data.

obv = onbalvol([closep tvolume]) accepts a two-column matrix
representing the closing price (closep) and volume traded (tvolume), in that
order.

obvts = onbalvol(tsobj) calculates the OBV from the stock data in the
financial time series object tsobj. The object must minimally contain series
names Close and Volume. The obvts output is a financial time series object
with the same dates as tsobj and a series named OnBalVol.

obvts = onbalvol(tsobj, ParameterName, ParameterValue, ...)
accepts parameter name/ parameter value pairs as input. These pairs specify
the name(s) for the required data series if it is different from the expected
default name(s). Valid parameter names are

• CloseName: closing prices series name

• VolumeName: volume traded series name

Parameter values are the strings that represent the valid parameter names.

closep Closing price (vector)

tvolume Volume traded

tsobj Financial time series object

onbalvol

5-120

Examples Compute the OBV for Disney stock and plot the results:

load disney.mat
dis_OnBalVol = onbalvol(dis)
plot(dis_OnBalVol)
title('On-Balance Volume for Disney')

See Also negvolidx

Reference Achelis, Steven B., Technical Analysis from A To Z, Second printing,
McGraw-Hill, 1995, pp. 207 - 209.

peravg

5-121

5peravgPurpose Periodic average

Syntax avgfts = peravg(tsobj, numperiod)
avgfts = peravg(tsobj, daterange)

Arguments

Description peravg calculates periodic averages of a financial time series object. Periodic
averages are calculated from the values per period defined. If the period
supplied is a string, it is assumed as a range of date string. If the period is
entered as numeric, the number represents the number of data points
(financial time series periods) to be included in a period for the calculation. For
example, if you enter '01/01/98::01/01/99' as the period input argument,
peravg returns the average of the time series between those dates, inclusive.
However, if you enter the number 5 as the period input, peravg returns a series
of averages from the time series data taken 5 date points (financial time series
periods) at a time.

avgfts = peravg(tsobj, numperiod) returns a structure avgfts that
contains the periodic (per numperiod periods) average of the financial time
series object. avgfts has field names identical to the data series names of
tsobj.

avgfts = peravg(tsobj, daterange) returns a structure avgfts that
contains the periodic (as specified by daterange) average of the financial time
series object. avgfts has field names identical to the data series names of
tsobj.

See Also mean, tsmovavg

mean in the MATLAB documentation

tsobj Financial time series object

numperiod Integer specifying the number of data points over
which each periodic average should be averaged

daterange Time period over which the data is averaged

plot

5-122

5plotPurpose Plot data series

Syntax plot(tsobj)
hp = plot(tsobj)
plot(tsobj, linefmt)
hp = plot(tsobj, linefmt)
plot(..., volumename, bar)
hp = plot(..., volumename, bar)

Arguments

Description plot(tsobj) plots the data series contained in the object tsobj. Each data
series will be a line. plot automatically generates a legend as well as dates on
the x-axis. Grid is turned on by default. plot uses the default color order as if
plotting a matrix.

The plot command automatically creates subplots when multiple time series
are encountered, and they differ greatly on their decimal scales. For example,
subplots are generated if one time series data set is in the 10s and another’s is
in the 10,000s.

hp = plot(tsobj) additionally returns the handle(s) to the object(s) inside the
plot figure. If there are multiple lines in the plot, hp is a vector of multiple
handles.

plot(tsobj, linefmt) plots the data series in tsobj using the line format
specified. For a list of possible line formats, see plot in the MATLAB
documentation. The plot legend is not generated, but the dates on the x-axis

tsobj Financial time series object

linefmt (Optional) Line format

volumename (Optional) Specifies which data series is the volume
series. volumename must be the exact data series name
for the volume column (case sensitive).

bar (Optional)
bar = 0 (default). Plot volume as a line.
bar = 1. Plot volume as a bar chart. The width of each
bar is the same as the default in bar.

plot

5-123

and the plot grid are. The specified line format is applied to all data series; that
is, all data series will have the same line type.

hp = plot(tsobj, linefmt) plots the data series in tsobj using the format
specified. The plot legend is not generated, but the dates on the x-axis and the
plot grid are. The specified line format is applied to all data series, that is, all
data series can have the same line type. If there are multiple lines in the plot,
hp is a vector of multiple handles.

plot(..., volumename, bar) additionally specifies which data series is the
volume. The volume is plotted in a subplot below the other data series. If
bar = 1, the volume is plotted as a bar chart. Otherwise, a line plot is used.

hp = plot(..., volumename, bar) returns handles for each line. If bar = 1,
the handle to the patch for the bars is also returned.

Note To turn the legend off, enter legend off at the MATLAB command
line. Once you turn it off, the legend is essentially deleted. To turn it back on,
recreate it using the legend command as if you are creating it for the first
time. To turn the grid off, enter grid off. To turn it back on, enter grid on.

See Also candle, chartfts, highlow

grid, legend, and plot in the MATLAB documentation

plus

5-124

5plusPurpose Financial time series addition

Syntax newfts = tsobj_1 + tsobj_2
newfts = tsobj + array
newfts = array + tsobj

Arguments

Description plus is an element by element addition of the components.

newfts = tsobj_1 + tsobj_2 adds financial time series objects. If an object is
to be added to another object, both objects must have the same dates and data
series names, although the order need not be the same. The order of the data
series, when one financial time series object is added to another, follows the
order of the first object.

newfts = tsobj + array adds an array element by element to a financial
time series object.

newfts = array + tsobj adds a financial time series object element by
element to an array.

See Also minus, rdivide, times

tsobj_1, tsobj_2 A pair of financial time series objects

array A scalar value or array with the number of rows equal
to the number of dates in tsobj and the number of
columns equal to the number of data series in tsobj

posvolidx

5-125

5posvolidxPurpose Positive volume index

Syntax pvi = posvolidx(closep, tvolume, initpvi)
pvi = posvolidx([closep tvolume], initpvi)
pvits = posvolidx(tsobj)
pvits = posvolidx(tsobj, initpvi, ParameterName, ParameterValue, ...)

Arguments

Description pvi = posvolidx(closep, tvolume, initpvi) calculates the positive
volume index from a set of stock closing prices (closep) and volume traded
(tvolume) data. pvi is a vector representing the positive volume index. If
initpvi is specified, posvolidx uses that value instead of the default (100).

pvi = posvolidx([closep tvolume], initpvi) accepts a two-column
matrix, the first column representing the closing prices (closep) and the
second representing the volume traded (tvolume). If initpvi is specified,
posvolidx uses that value instead of the default (100).

pvits = posvolidx(tsobj) calculates the positive volume index from the
financial time series object tsobj. The object must contain, at least, the series
Close and Volume. The pvits output is a financial time series object with dates
similar to tsobj and a data series named PVI. The initial value for the positive
volume index is arbitrarily set to 100.

pvits = posvolidx(tsobj, initpvi, ParameterName, ParameterValue,...)
accepts parameter name/parameter value pairs as input. These pairs specify
the name(s) for the required data series if it is different from the expected
default name(s). Valid parameter names are

• CloseName: closing prices series name

• VolumeName: volume traded series name

closep Closing price (vector)

tvolume Volume traded (vector)

initpvi (Optional) Initial value for positive volume index
Default = 100.

tsobj Financial time series object

posvolidx

5-126

Parameter values are the strings that represent the valid parameter names.

Examples Compute the positive volume index for Disney stock and plot the results:

load disney.mat
dis_PosVol = posvolidx(dis)
plot(dis_PosVol)
title('Positive Volume Index for Disney')

See Also onbalvol, negvolidx

Reference Achelis, Steven B., Technical Analysis from A To Z, Second printing,
McGraw-Hill, 1995, pp. 236 - 238.

power

5-127

5powerPurpose Financial time series power

Syntax newfts = tsobj .^ array
newfts = array .^tsobj
newfts = tsobj_1 .^ tsobj_2

Arguments

Description newfts = tsobj .^ array raises all values in the data series of the financial
time series object tsobj element by element to the power indicated by the array
value. The results are stored in another financial time series object newfts. The
newfts object contains the same data series names as tsobj.

newfts = array .^ tsobj raises the array values element by element to the
values contained in the data series of the financial time series object tsobj. The
results are stored in another financial time series object newfts. The newfts
object contains the same data series names as tsobj.

newfts = tsobj_1 .^ tsobj_2 raises the values in the object tsobj_1
element by element to the values in the object tsobj_2. The data series names,
the dates, and the number of data points in both series must be identical.
newfts contains the same data series names as the original time series objects.

See Also minus, plus, rdivide, times

tsobj Financial time series object

array A scalar value or array with the number of rows equal
to the number of dates in tsobj and the number of
columns equal to the number of data series in tsobj.

tsobj_1, tsobj_2 A pair of financial time series objects

prcroc

5-128

5prcrocPurpose Price rate of change

Syntax proc = prcroc(closep, nperiods)
procts = prcroc(tsobj, nperiods)
procts = prcroc(tsobj, nperiods, ParameterName, ParameterValue)

Arguments

Description proc = prcroc(closep, nperiods) calculates the price rate of change proc
from the closing price closep. If nperiods periods is specified, the price rate of
change is calculated between the current closing price and the closing price
nperiods ago.

procts = prcroc(tsobj, nperiods) calculates the price rate of change
procts from the financial time series object tsobj. tsobj must contain a data
series named Close. The output procts is a financial time series object with
similar dates as tsobj and a data series named PriceROC. If nperiods is
specified, the price rate of change is calculated between the current closing
price and the closing price nperiods ago.

procts = prcroc(tsobj, nperiods, ParameterName, ParameterValue)
specifies the name for the required data series when it is different from the
default name. The valid parameter name is
• CloseName: closing price series name

The parameter value is a string that represents the valid parameter name.

closep Closing price

nperiods (Optional) Period difference. Default = 12.

tsobj Financial time series object

prcroc

5-129

Examples Compute the price rate of change for Disney stock and plot the results:

load disney.mat
dis_PriceRoc = prcroc(dis)
plot(dis_PriceRoc)
title('Price Rate of Change for Disney')

See Also volroc

Reference Achelis, Steven B., Technical Analysis from A To Z, Second printing,
McGraw-Hill, 1995, pp. 243 - 245.

pvtrend

5-130

5pvtrendPurpose Price and Volume Trend (PVT)

Syntax pvt = pvtrend(closep, tvolume)
pvt = pvtrend([closep tvolume])
pvtts = pvtrend(tsobj)
pvtts = pvtrend(tsobj, ParameterName, ParameterValue, ...)

Arguments

Description pvt = pvtrend(closep, tvolume) calculates the Price and Volume Trend
(PVT) from the stock closing price (closep) data and the volume traded
(tvolume) data.

pvt = pvtrend([closep tvolume]) accepts a two-column matrix in which the
first column contains the closing prices (closep) and the second contains the
volume traded (tvolume).

pvtts = pvtrend(tsobj) calculates the PVT from the stock data contained in
the financial time series object tsobj. The object tsobj must contain the
closing price series Close and the volume traded series Volume. The output
pvtts is a financial time series object with dates similar to tsobj and a data
series named PVT.

pvtts = pvtrend(tsobj, ParameterName, ParameterValue, ...) accepts
parameter name/ parameter value pairs as input. These pairs specify the
name(s) for the required data series if it is different from the expected default
name(s). Valid parameter names are

• CloseName: closing prices series name

• VolumeName: volume traded series name

Parameter values are the strings that represent the valid parameter names.

closep Closing price

tvolume Volume traded

tsobj Financial time series object

pvtrend

5-131

Examples Compute the PVT for Disney stock and plot the results:

load disney.mat
dis_PVTrend = pvtrend(dis)
plot(dis_PVTrend)
title('Price and Volume Trend for Disney')

Reference Achelis, Steven B., Technical Analysis from A To Z, Second printing,
McGraw-Hill, 1995, pp. 239 - 240.

rdivide

5-132

5rdividePurpose Financial time series division

Syntax newfts = tsobj_1 ./ tsobj_2
newfts = tsobj ./ array
newfts = array ./ tsobj

Arguments

Description The rdivide method divides, element by element, the components of one
financial time series object by the components of the other. You can also divide
the whole object by an array or divide a financial time series object into an
array.

If an object is to be divided by another object, both objects must have the same
dates and data series names, although the order need not be the same. The
order of the data series, when an object is divided by another object, follows the
order of the first object.

newfts = tsobj_1 ./ tsobj_2 divides financial time series objects element
by element.

newfts = tsobj ./ array divides a financial time series object element by
element by an array.

newfts = array ./ tsobj divides an array element by element by a financial
time series object.

For financial time series objects, the rdivide operation is identical to the
mrdivide operation.

See Also minus, mrdivide, plus, times

tsobj_1, tsobj_2 A pair of financial time series objects

array A scalar value or array with the number of rows equal
to the number of dates in tsobj and the number of
columns equal to the number of data series in tsobj

resamplets

5-133

5resampletsPurpose Downsample data

Syntax newfts = resamplets(oldfts, samplestep)

Description newfts = resamplets(oldfts, samplestep) downsamples the data
contained in the financial time series object oldfts every samplestep periods.
For example, to have the new financial time series object contain every other
data element from oldfts, set samplestep to 2.

newfts is a financial time series object containing the same data series (names)
as the input oldfts.

See Also filter

rmfield

5-134

5rmfieldPurpose Remove data series

Syntax fts = rmfield(tsobj, fieldname)

Arguments

Description fts = rmfield(tsobj, fieldname) removes the data series fieldname and
its contents from the financial time series object tsobj.

See Also chfield, extfield, fieldnames, getfield, isfield

tsobj Financial time series object

fieldname String array containing the data series name to
remove a single series from the object. Cell array of
data series names to remove multiple data series from
the object at the same time.

rsindex

5-135

5rsindexPurpose Relative Strength Index (RSI)

Syntax rsi = rsindex(closep, nperiods)
rsits = rsindex(tsobj, nperiods)
rsits = rsindex(tsobj, nperiods, ParameterName, ParameterValue)

Arguments

Description rsi = rsindex(closep, nperiods) calculates the Relative Strength Index
(RSI) from the closing price vector closep.

rsits = rsindex(tsobj, nperiods) calculates the RSI from the closing price
series in the financial time series object tsobj. The object tsobj must contain
at least the series Close, representing the closing prices. The output rsits is a
financial time series object whose dates are the same as tsobj and whose data
series name is RSI.

rsits = rsindex(tsobj, nperiods, ParameterName, ParameterValue)
accepts a parameter name/parameter value pair as input. This pair specifies
the name for the required data series if it is different from the expected default
name. The valid parameter name is

• CloseName: closing prices series name

The parameter value is the string that represents the valid parameter name.

Note The relative strength index is calculated by dividing the sum of the
closing values for the up days by the sum of the closing values for the down
days: RSI = sum(CLOSEP_up)/sum(CLOSEP_down).
Also, the first value of RSI, RISI(1), is set as NaN to preserve the dimensions of
CLOSEP.

closep Vector of closing prices

nperiods (Optional) Number of periods. Default = 14.

tsobj Financial time series object

rsindex

5-136

Examples Compute the RSI for Disney stock and plot the results:

load disney.mat
dis_RSI = rsindex(dis)
plot(dis_RSI)
title('Relative Strength Index for Disney')

See Also negvolidx, posvolidx

Reference Murphy, John J., Technical Analysis of the Futures Market, New York Institute
of Finance, 1986, pp. 295 - 302.

setfield

5-137

5setfieldPurpose Set content of a specific field

Syntax newfts = setfield(tsobj, field, V)
newfts = setfield(tsobj, field, {dates}, V)

Description setfield treats the contents of fields in a time series object (tsobj) as fields in
a structure.

newfts = setfield(tsobj, field, V) sets the contents of the specified field
to the value V. This is equivalent to the syntax S.field = V.

newfts = setfield(tsobj, field, {dates}, V) sets the contents of the
specified field for the specified dates. dates can be individual cells of date
strings or a cell of a date string range using the :: operator, e.g.,
'03/01/99::03/31/99'. Dates can contain time-of-day information.

Examples Example 1. Set the closing value for all days to 3890.

load dji30short
format bank
myfts1 = setfield(myfts1, 'Close', 3890);

Example 2. Set values for specific times on specific days.

First create a financial time series containing time-of-day data.

dates = ['01-Jan-2001';'01-Jan-2001'; '02-Jan-2001'; ...
'02-Jan-2001'; '03-Jan-2001';'03-Jan-2001'];

times = ['11:00';'12:00';'11:00';'12:00';'11:00';'12:00'];
dates_times = cellstr([dates, repmat(' ',size(dates,1),1),...

times]);
myfts = fints(dates_times,[(1:4)'; nan; 6],{'Data1'},1,...

'My FINTS')

myfts =

 desc: My FINTS
 freq: Daily (1)

 'dates: (6)' 'times: (6)' 'Data1: (6)'
 '01-Jan-2001' '11:00' [1]

setfield

5-138

 ' " ' '12:00' [2]
 '02-Jan-2001' '11:00' [3]
 ' " ' '12:00' [4]
 '03-Jan-2001' '11:00' [NaN]
 ' " ' '12:00' [6]

Now use setfield to replace the data in myfts with new data starting at 12:00
on January 1, 2001 and ending at 11:00 on January 3, 2001.

S = setfield(myfts,'Data1',...
{'01-Jan-2001 12:00::03-Jan-2001 11:00'},(102:105)')

S =

 desc: My FINTS
 freq: Daily (1)

 'dates: (6)' 'times: (6)' 'Data1: (6)'
 '01-Jan-2001' '11:00' [1.00]
 ' " ' '12:00' [102.00]
 '02-Jan-2001' '11:00' [103.00]
 ' " ' '12:00' [104.00]
 '03-Jan-2001' '11:00' [105.00]
 ' " ' '12:00' [6.00]

See Also chfield, fieldnames, getfield, isfield, rmfield

size

5-139

5sizePurpose Get number of dates and data series

Syntax szfts = size(tsobj)
szfts = size(tsobj, dim)

Arguments

Description szfts = size(tsobj) returns the number of dates (rows) and the number of
data series (columns) in the financial time series object tsobj. The result is
returned in the vector szfts, whose first element is the number of dates and
second is the number of data series.

szfts = size(tsobj, dim) specifies the dimension you want to extract.

See Also length

size in the MATLAB documentation

tsobj Financial time series object

dim Dimension:
dim = 1 returns number of dates (rows).
dim = 2 returns number of data series (columns).

smoothts

5-140

5smoothtsPurpose Smooth data

Syntax output = smoothts(input)
output = smoothts(input, 'b', wsize)
output = smoothts(input, 'g', wsize, stdev)
output = smoothts(input, 'e', n)

Arguments

Description smoothts smooths the input data using the specified method.

output = smoothts(input) smooths the input data using the default Box
method with window size, wsize, of 5.

output = smoothts(input, 'b', wsize) smooths the input data using the
Box (simple, linear) method. wsize specifies the width of the box to be used.

output = smoothts(input, 'g', wsize, stdev) smooths the input data
using the Gaussian window method.

input A financial time series object or a row-oriented matrix.
In a row-oriented matrix each row represents an
individual set of observations.

'b', 'g', or 'e' Smoothing method (essentially the type of filter used).
Can be Exponential (e), Gaussian (g), or Box (b).
Default = b.

wsize Window size (scalar). Default = 5.

stdev Scalar that represents the standard deviation of the
Gaussian window. Default = 0.65.

n For Exponential method, specifies window size or
exponential factor, depending upon value.
n > 1 (window size) or period length
n < 1 and > 0 (exponential factor: alpha)
n = 1 (either window size or alpha)
If n is not supplied, the defaults are wsize = 5 and
alpha = 0.3333.

smoothts

5-141

output = smoothts(input, 'e', n) smooths the input data using the
Exponential method. n can represent the window size (period length) or alpha.
If n > 1, n represents the window size. If 0 < n < 1, n represents alpha, where

If input is a financial time series object, output is a financial time series object
identical to input except for contents. If input is a row-oriented matrix, output
is a row-oriented matrix of the same length.

See Also tsmovavg

α 2
wsize 1+
-------------------------=

sortfts

5-142

5sortftsPurpose Sort financial time series

Syntax sfts = sortfts(tsobj)
sfts = sortfts(tsobj, flag)
sfts = sortfts(tsobj, seriesnames, flag)
[sfts, sidx] = sortfts(...)

Arguments

Description sfts = sortfts(tsobj) sorts the financial time series object tsobj in
increasing order based only upon the 'dates' vector if tsobj does not contain
time-of-day information. If the object includes time-of-day information, the sort
is based upon a combination of the 'dates' and 'times' vectors. The 'times'
vector cannot be sorted individually.

sfts = sortfts(tsobj, flag) sets the order of the sort. flag = 1: increasing
date and time order. flag = -1: decreasing date and time order.

sfts = sortfts(tsobj, seriesnames, flag) sorts the financial time series
object tsobj based upon the data series name(s) seriesnames. The
seriesnames argument can be a single string containing a data series name or
a cell array containing a list of data series names. If the optional flag is set to
-1, the sort is in decreasing order.

[sfts, sidx] = sortfts(...) additionally returns the index of the original
object tsobj sorted based on 'dates' or specified data series name(s).

See Also issorted

sort and sortrows in the MATLAB documentation

tsobj Financial time series object

flag (Optional) Sort order:
flag = 1; increasing order (default)
flag = -1; decreasing order

seriesnames (Optional) String containing a data series name or cell
array containing a list of data series names

spctkd

5-143

5spctkdPurpose Slow stochastics

Syntax [spctk, spctd] = spctkd(fastpctk, fastpctd)
[spctk, spctd] = spctkd([fastpctk fastpctd])
[spctk, spctd] = spctkd(fastpctk, fastpctd, dperiods, dmamethod)
[spctk, spctd] = spctkd([fastpctk fastpctd], dperiods, dmamethod)
skdts = spctkd(tsobj)
skdts = spctkd(tsobj, dperiods, dmamethod)
skdts = spctkd(tsobj, dperiods, dmamethod, ParameterName,
 ParameterValue, ...)

Arguments

Description [spctk, spctd] = spctkd(fastpctk, fastpctd) calculates the slow
stochastics S%K and S%D. spctk and spctd are column vectors representing
the respective slow stochastics. The inputs must be single column-oriented
vectors containing the fast stochastics F%K and F%D.

[spctk, spctd] = spctkd([fastpctk fastpctd]) accepts a two-column
matrix as input. The first column contains the fast stochastic F%K values, and
the second contains the fast stochastic F%D values.

[spctk, spctd] = spctkd(fastpctk, fastpctd, dperiods, dmamethod)
calculates the slow stochastics, S%K and S%D, using the value of dperiods to
set the number of periods and dmamethod to indicate the moving average
method. The inputs fastpctk and fastpctk must contain the fast stochastics,
F%K and F%D, in column orientation. spctk and spctd are column vectors
representing the respective slow stochastics.

Valid moving average methods for %D are exponential ('e'), triangular ('t'),
and modified ('m'). See tsmovavg for explanations of these methods.

fastpctk Fast stochastic F%K (vector)

fastpctk Fast stochastic F%D (vector)

dperiods (Optional) %D periods. Default = 3.

dmamethod (Optional) %D moving average method. Default = 'e'
(exponential).

tsobj Financial time series object

spctkd

5-144

[spctk, spctd] = spctkd([fastpctk fastpctd], dperiods, dmamethod)
accepts a two-column matrix rather than two separate vectors. The first
column contains the F%K values, and the second contains the F%D values.

skdts = spctkd(tsobj) calculates the slow stochastics, S%K and S%D. tsobj
must contain the fast stochastics, F%K and F%D, in data series named
PercentK and PercentD. The skdts output is a financial time series object with
the same dates as tsobj. Within tsobj the two series SlowPctK and SlowPctD
represent the respective slow stochastics.

skdts = spctkd(tsobj, dperiods, dmamethod) allows you to specify the
length and the method of the moving average used to calculate S%D values.

skdts = spctkd(tsobj, dperiods, dmamethod, ParameterName,
ParameterValue, ...) accepts parameter name/parameter value pairs as
input. These pairs specify the name(s) for the required data series if it is
different from the expected default name(s). Valid parameter names are

• KName: F%K series name

• DName: F%D series name

Parameter values are the strings that represent the valid parameter names.

spctkd

5-145

Examples Compute the slow stochastics for Disney stock and plot the results:

load disney.mat
dis_FastStoch = fpctkd(dis);
dis_SlowStoch = spctkd(dis_FastStoch);
plot(dis_SlowStoch)
title('Slow Stochastics for Disney')

See Also fpctkd, stochosc, tsmovavg

Reference Achelis, Steven B., Technical Analysis from A To Z, Second printing,
McGraw-Hill, 1995, pp. 268 - 271.

std

5-146

5stdPurpose Standard deviation

Syntax tsstd = std(tsobj)
tsstd = std(tsobj, flag)

Arguments

Description tsstd = std(tsobj) computes the standard deviation of each data series in
the financial time series object tsobj and returns the results in tsstd. The
tsstd output is a structure with field name(s) identical to the data series
name(s).

tsstd = std(tsobj, flag) normalizes the data as indicated by flag.

See Also hist, mean

tsobj Financial time series object

flag (Optional) Normalization factor:
flag = 1 normalizes by n (number of observations).
flag = 0 normalizes by n-1.

stochosc

5-147

5stochoscPurpose Stochastic oscillator

Syntax stosc = stochosc(highp, lowp, closep)
stosc = stochosc([highp lowp closep])
stosc = stochosc(highp, lowp, closep, kperiods, dperiods, dmamethod)
stosc = stochosc([highp lowp closep], kperiods, dperiods, dmamethod)
stoscts = stochosc(tsobj, kperiods, dperiods, dmamethod)
stoscts = stochosc(tsobj, kperiods, dperiods, dmamethod,

ParameterName, ParameterValue, ...)

Arguments

Description stosc = stochosc(highp, lowp, closep) calculates the fast stochastics
F%K and F%D from the stock price data highp (high prices), lowp (low prices),
and closep (closing prices). stosc is a two-column matrix whose first column
is the F%K values and second is the F%D values.

stosc = stochosc([highp lowp closep]) accepts a three-column matrix of
high (highp), low (lowp), and closing prices (closep), in that order.

stosc = stochosc(highp, lowp, closep, kperiods, dperiods,
dmamethod) calculates the fast stochastics F%K and F%D from the stock price
data highp (high prices), lowp (low prices), and closep (closing prices).
kperiods sets the %K period. dperiods sets the %D period. damethod specifies
the %D moving average method. Valid moving average methods for %D are
exponential ('e') and triangular ('t'). See tsmovavg for explanations of these
methods.

highp High price (vector)

lowp Low price (vector)

closep Closing price (vector)

kperiods (Optional) %K periods. Default = 10.

dperiods (Optional) %D periods. Default = 3.

damethod (Optional) %D moving average method. Default = 'e'
(exponential).

tsobj Financial time series object

stochosc

5-148

stosc= stochosc([highp lowp closep], kperiods, dperiods, dmamethod)
accepts a three-column matrix of high (highp), low (lowp), and closing prices
(closep), in that order.

stoscts = stochosc(tsobj, kperiods, dperiods, dmamethod) calculates
the fast stochastics F%K and F%D from the stock price data in the financial
time series object tsobj. tsobj must minimally contain the series High (high
prices), Low (low prices), and Close (closing prices). stoscts is a financial time
series object with similar dates to tsobj and two data series named SOK and
SOD.

stoscts = stochosc(tsobj, kperiods, dperiods, dmamethod,
ParameterName, ParameterValue, ...) accepts parameter name/parameter
value pairs as input. These pairs specify the name(s) for the required data
series if it is different from the expected default name(s). Valid parameter
names are

• HighName: high prices series name

• LowName: low prices series name

• CloseName: closing prices series name

Parameter values are the strings that represent the valid parameter names.

stochosc

5-149

Examples Compute the stochastic oscillator for Disney stock and plot the results:

load disney.mat
dis_StochOsc = stochosc(dis)
plot(dis_StochOsc)
title('Stochastic Oscillator for Disney')

See Also fpctkd, spctkd

Reference Achelis, Steven B., Technical Analysis from A To Z, Second printing,
McGraw-Hill, 1995, pp. 268 - 271.

subsasgn

5-150

5subsasgnPurpose Content assignment

Description subasgn assigns content to a component within a financial time series object.
subasgn supports integer indexing or date string indexing into the time series
object with values assigned to the designated components. Serial date numbers
cannot be used as indices. To use date string indexing, enclose the date string(s)
in a pair of single quotation marks ' '.

You can use integer indexing on the object as in any other MATLAB matrix. It
will return the appropriate entry(ies) from the object.

You must specify the component to which you want to assign values. An
assigned value must be either a scalar or a column vector.

Examples Given a time series myfts with a default data series name of series1,

myfts.series1('07/01/98::07/03/98') = [1 2 3]';

assigns the values 1, 2, and 3 corresponding to the first three days of July, 1998.

myfts('07/01/98::07/05/98')

ans =

desc: Data Assignment
freq: Daily (1)

'dates: (5)' 'series1: (5)'
'01-Jul-1998' [1]
'02-Jul-1998' [2]
'03-Jul-1998' [3]
'04-Jul-1998' [4561.2]
'05-Jul-1998' [5612.3]

When the financial time series object contains a time-of-day specification, you
can assign data to a specific time on a specific day. For example, create a
financial time series object called timeday containing both dates and times:

dates = ['01-Jan-2001';'01-Jan-2001'; '02-Jan-2001'; ...
'02-Jan-2001'; '03-Jan-2001';'03-Jan-2001'];
times = ['11:00';'12:00';'11:00';'12:00';'11:00';'12:00'];

subsasgn

5-151

dates_times = cellstr([dates, repmat(' ',size(dates,1),1),...
times]);
timeday = fints(dates_times,(1:6)',{'Data1'},1,'My first FINTS')

timeday =

 desc: My first FINTS
 freq: Daily (1)

 'dates: (6)' 'times: (6)' 'Data1: (6)'
 '01-Jan-2001' '11:00' [1]
 ' " ' '12:00' [2]
 '02-Jan-2001' '11:00' [3]
 ' " ' '12:00' [4]
 '03-Jan-2001' '11:00' [5]
 ' " ' '12:00' [6]

Use integer indexing to assign the value 999 to the first item in the object.

timeday(1) = 999

timeday =

 desc: My first FINTS
 freq: Daily (1)

 'dates: (6)' 'times: (6)' 'Data1: (6)'
 '01-Jan-2001' '11:00' [999]
 ' " ' '12:00' [2]
 '02-Jan-2001' '11:00' [3]
 ' " ' '12:00' [4]
 '03-Jan-2001' '11:00' [5]
 ' " ' '12:00' [6]

For value assignment using date strings, enclose the string in single quotation
marks. If a date has multiple times, designating only the date and assigning a
value results in every element of that date taking on the assigned value. For
example, to assign the value 0.5 to all times-of-day on January 1, 2001, enter

timedata('01-Jan-2001') = 0.5

subsasgn

5-152

The result is

timedata =

 desc: My first FINTS
 freq: Daily (1)

 'dates: (6)' 'times: (6)' 'Data1: (6)'
 '01-Jan-2001' '11:00' [0.5000]
 ' " ' '12:00' [0.5000]
 '02-Jan-2001' '11:00' [3]
 ' " ' '12:00' [4]
 '03-Jan-2001' '11:00' [5]
 ' " ' '12:00' [6]

To access the individual components of the financial time series object, use the
structure syntax. For example, to assign a range of data to all the data items
in the series Data1, you can use

timedata.Data1 = (0: .1 : .5)'

timedata =

 desc: My first FINTS
 freq: Daily (1)

 'dates: (6)' 'times: (6)' 'Data1: (6)'
 '01-Jan-2001' '11:00' [0]
 ' " ' '12:00' [0.1000]
 '02-Jan-2001' '11:00' [0.2000]
 ' " ' '12:00' [0.3000]
 '03-Jan-2001' '11:00' [0.4000]
 ' " ' '12:00' [0.5000]

See Also datestr in the Financial Toolbox documentation

subsref

subsref

5-153

5subsrefPurpose Subscripted reference

Description subsref implements indexing for a financial time series object. Integer
indexing or date (and time) string indexing is allowed. Serial date numbers
cannot be used as indices.

To use date string indexing, enclose the date string(s) in a pair of single
quotation marks ' '.

You can use integer indexing on the object as in any other MATLAB matrix. It
returns the appropriate entry(ies) from the object.

Additionally, subsref lets you access the individual components of the object
using the structure syntax.

Examples Create a time series named myfts:

myfts = fints((datenum('07/01/98'):datenum('07/01/98')+4)',...
[1234.56; 2345.61; 3456.12; 4561.23; 5612.34], [], 'Daily',...
'Data Reference');

Extract the data for the single day July 1, 1998:

myfts('07/01/98')

ans =

desc: Data Reference
freq: Daily (1)

'dates: (1)' 'series1: (1)'
'01-Jul-1998' [1234.6]

subsref

5-154

Now, extract the data for the range of dates July 1, 1998, through July 5, 1998:

myfts('07/01/98::07/03/98')

ans =

desc: Data Reference
freq: Daily (1)

'dates: (3)' 'series1: (3)'
'01-Jul-1998' [1234.6]
'02-Jul-1998' [2345.6]
'03-Jul-1998' [3456.1]

You can use the MATLAB structure syntax to access the individual
components of a financial time series object. To get the description field of
myfts, enter

myfts.desc

at the command line, which returns

ans =
Data Reference

Similarly

myfts.series1

returns

 ans =

desc: Data Reference
freq: Daily (1)

'dates: (5)' 'series1: (5)'
'01-Jul-1998' [1234.6]
'02-Jul-1998' [2345.6]
'03-Jul-1998' [3456.1]
'04-Jul-1998' [4561.2]
'05-Jul-1998' [5612.3]

The syntax for integer indexing is the same as for any other MATLAB matrix.
Create a new financial time series object containing both dates and times:

subsref

5-155

dates = ['01-Jan-2001';'01-Jan-2001'; '02-Jan-2001'; ...
'02-Jan-2001'; '03-Jan-2001';'03-Jan-2001'];

times = ['11:00';'12:00';'11:00';'12:00';'11:00';'12:00'];
dates_times = cellstr([dates, repmat(' ',size(dates,1),1),...

times]);
anewfts = fints(dates_times,(1:6)',{'Data1'},1,'Another FinTs');

Use integer indexing to extract the second and third data items from the object.

anewfts(2:3)

ans =

desc: Another FinTs
freq: Daily (1)

'dates: (2)' 'times: (2)' 'Data1: (2)'
'01-Jan-2001' '12:00' [2]
'02-Jan-2001' '11:00' [3]

For date or string enclose the indexing string in a pair of single quotation
marks.

If there is one date with multiple times, indexing with only the date returns all
the times for that specific date:

anewfts('01-Jan-2001')

ans =

desc: Another FinTs
freq: Daily (1)

'dates: (2)' 'times: (2)' 'Data1: (2)'
'01-Jan-2001' '11:00' [1]
' " ' '12:00' [2]

subsref

5-156

To specify one specific date and time, index with that date and time:

anewfts('01-Jan-2001 12:00')

ans =

desc: Another FinTs
 freq: Daily (1)

 'dates: (1)' 'times: (1)' 'Data1: (1)'
 '01-Jan-2001' '12:00' [2]

To specify a range of dates and times, use the double colon (::) operator:

anewfts('01-Jan-2001 12:00::03-Jan-2001 11:00')

ans =

 desc: Another FinTs
 freq: Daily (1)

 'dates: (4)' 'times: (4)' 'Data1: (4)'
 '01-Jan-2001' '12:00' [2]
 '02-Jan-2001' '11:00' [3]
 ' " ' '12:00' [4]

'03-Jan-2001' '11:00' [5]

To request all the dates, times, and data, use the :: operator without
specifiying any specific date or time:

anewfts('::')

See Also fts2mat, subsasgn

datestr in the Financial Toolbox documentation

times

5-157

5timesPurpose Financial time series multiplication

Syntax newfts = tsobj_1 .* tsobj_2
newfts = tsobj .* array
newfts = array .* tsobj

Arguments

Description The times method multiplies element by element the components of one
financial time series object by the components of the other. You can also
multiply the entire object by an array.

If an object is to be multiplied by another object, both objects must have the
same dates and data series names, although the order need not be the same.
The order of the data series, when an object is multiplied by another object,
follows the order of the first object.

newfts = tsobj_1 .* tsobj_2 multiplies financial time series objects
element by element.

newfts = tsobj .* array multiplies a financial time series object element by
element by an array.

newfts = array .* tsobj newfts = array / tsobj multiplies an array
element by element by a financial time series object.

For financial time series objects, the times operation is identical to the mtimes
operation.

See Also minus, mtimes, plus, rdivide

tsobj_1, tsobj_2 A pair of financial time series objects

array A scalar value or array with the number of rows equal
to the number of dates in tsobj and the number of
columns equal to the number of data series in tsobj

toannual

5-158

5toannualPurpose Convert to annual

Syntax newfts = toannual(oldfts)

Description newfts = toannual(oldfts) converts a financial time series of any frequency
to one of an annual frequency. toannual sets the dates to the end of the year
(December 31).

toannual displays only the last date and last time of the end of the year.

If oldfts does not contain time-of-day data, newfts does not contain a times
vector.

If oldfts contains time-of-day data, newfts contains a times vector that
replicates the times in oldfts.

If December 31 for a particular year does not appear in oldfts, and oldfts
contains time-of-day information, the time-of-day for that specific date is set to
00:00.

See Also convertto, todaily, tomonthly, toquarterly, tosemi, toweekly

todaily

5-159

5todailyPurpose Convert to daily

Syntax newfts = todaily(oldfts)

Description newfts = todaily(oldfts) converts a financial time series of any frequency
to one of a daily frequency. todaily assumes a five-day business week. If
oldfts contains weekend data, todaily removes that data when creating
newfts.

To create a daily time series from nondaily oldfts, todaily copies the periodic
value for the number of days in the period of the input time series. For example,
if oldfts is a weekly time series, the value for each week is replicated four
additional times until the next week’s value is encountered. The process is then
repeated for the next week.

If oldfts does not contain time-of-day data, newfts does not contain a times
vector.

If oldfts contains time-of-day data, newfts contains a times vector that
replicates the times in oldfts.

If newfts contains a date (e.g., January 31) that does not appear in oldfts, and
oldfts contains time-of-day information, the time-of-day for that date is set to
00:00.

See Also convertto, toannual, tomonthly, toquarterly, tosemi, toweekly

todecimal

5-160

5todecimalPurpose Fractional to decimal conversion

Syntax usddec = todecimal(quote, fracpart)

Description usddec = todecimal(quote, fracpart) returns the decimal equivalent,
usddec, of a security whose price is normally quoted as a whole number and a
fraction (quote). fracpart indicates the fractional base (denominator) with
which the security is normally quoted (default = 32).

Examples In the Wall Street Journal, bond prices are quoted in fractional form based on
a denominator of 32. For example, if you see the quoted price is 100:05 it means
100 5/32. To find the equivalent decimal value, enter

usddec = todecimal(100.05)

usddec =
100.1563

usddec = todecimal(97.04, 16)

usddec =
97.2500

Note The convention of using . (period) as a substitute for : (colon) in the
input is adopted from Microsoft Excel.

See Also toquoted

tomonthly

5-161

5tomonthlyPurpose Convert to monthly

Syntax newfts = tomonthly(oldfts)

Description newfts = tomonthly(oldfts) converts a financial time series of any
frequency to one of a monthly frequency. tomonthly assumes a five-day
business week.

If oldfts is a daily or weekly time series, the monthly values in newfts are the
averages of the input daily or weekly values. If oldfts is a quarterly,
semiannual, or annual time series, the input values are replicated as many
times as necessary to fill the monthly time series. Dates are set to the end of
the month.

tomonthly displays only the last date and last time of the end of each month.

If oldfts does not contain time-of-day data, newfts does not contain a times
vector.

If oldfts contains time-of-day data, newfts contains a times vector that
replicates the times in oldfts.

If newfts contains a date (e.g., January 31) that does not appear in oldfts, and
oldfts contains time-of-day information, the time-of-day for that date is set to
00:00.

See Also convertto, toannual, todaily, toquarterly, tosemi, toweekly

toquarterly

5-162

5toquarterlyPurpose Convert to quarterly

Syntax newfts = toquarterly(oldfts)

Description newfts = toquarterly(oldfts) converts a financial time series of any
frequency to one of a quarterly frequency. toquarterly assumes a five-day
business week.

If oldfts is a daily, weekly, or monthly time series, the quarterly values in
newfts are the averages of the input values for the quarter. If oldfts is a
semiannual or annual time series, the input values are replicated as many
times as necessary to fill the quarterly time series.

Dates in newfts are set to the end of the quarters (March 31, June 30,
September 30, and December 31).

If oldfts does not contain time-of-day data, newfts does not contain a times
vector.

If oldfts contains time-of-day data, newfts contains a times vector that
replicates the times in oldfts.

If newfts contains a date (e.g., March 31) that does not appear in oldfts, and
oldfts contains time-of-day information, the time-of-day for that date is set to
00:00.

See Also convertto, toannual, todaily, tomonthly, tosemi, toweekly

toquoted

5-163

5toquotedPurpose Decimal to fractional conversion

Syntax quote = toquoted(usddec, fracpart)

Description quote = toquoted(usddec, fracpart) returns the fractional equivalent,
quote, of the decimal figure, usddec, based on the fractional base
(denominator), fracpart. The fractional bases are the ones used for quoting
equity prices in the United States (denominator 2, 4, 8, 16, or 32). If fracpart
is not entered, the denominator 32 is assumed.

Examples A United States equity price in decimal form is 101.625. To convert this to
fractional form in eighths of a dollar:

quote = toquoted(101.625, 8)

quote =
101.05

The answer is interpreted as 101 5/8.

Note The convention of using . (period) as a substitute for : (colon) in the
output is adopted from Microsoft Excel.

See Also todecimal

tosemi

5-164

5tosemiPurpose Convert to semiannual

Syntax newfts = tosemi(oldfts)

Description newfts = tosemi(oldfts) converts a financial time series of any frequency to
one of a semiannual frequency. tosemi sets the dates to the end of each
semiannual time period (June 30 and December 31).

tosemi displays only the last date and last time of the end of each semiannual
period.

If oldfts does not contain time-of-day data, newfts does not contain a times
vector.

If oldfts contains time-of-day data, newfts contains a times vector that
replicates the times in oldfts.

If newfts contains a date (e.g., June 30) that does not appear in oldfts, and
oldfts contains time-of-day information, the time-of-day for that date is set to
00:00.

See Also convertto, toannual, todaily, tomonthly, toquarterly, toweekly

toweekly

5-165

5toweeklyPurpose Convert to weekly

Syntax newfts = toweekly(oldfts)

Description newfts = toweekly(oldfts) converts a financial time series of any frequency
to one of a weekly frequency. toweekly assumes a five-day business week. All
days in newfts are set to Fridays.

If oldfts is a daily series, newfts is a financial time series containing data for
Fridays only. If oldfts is a monthly, quarterly, semiannual, or annual time
series, the input values are replicated as many times as there are Fridays to
fill the weekly time series.

toweekly displays only the last date and last time of the Friday of each week.

If oldfts does not contain time-of-day data, newfts does not contain a times
vector.

If oldfts contains time-of-day data, newfts contains a times vector that
replicates the times in oldfts.

If newfts contains a date (e.g., January 31) that does not appear in oldfts, and
oldfts contains time-of-day information, the time-of-day for that date is set to
00:00.

See Also convertto, toannual, todaily, tomonthly, toquarterly, tosemi

tsaccel

5-166

5tsaccelPurpose Acceleration between periods

Syntax acc = tsaccel(data, nperiods, datatype)
accts = tsaccel(tsobj, nperiods, datatype)

 Arguments

Description Acceleration is the difference of two momentums separated by some number of
periods.

acc = tsaccel(data, nperiods, datatype) calculates the acceleration of a
data series, essentially the difference of the current momentum with the
momentum some number of periods ago. If nperiods is specified, tsaccel
calculates the acceleration of a data series data with time distance of nperiods
periods.

accts = tsaccel(tsobj, nperiods, datatype) calculates the acceleration
of the data series in the financial time series object tsobj, essentially the
difference of the current momentum with the momentum some number of
periods ago. Each data series in tsobj is treated individually. accts is a
financial time series object with similar dates and data series names as tsobj.

data Data series

nperiods (Optional) Number of periods. Default = 12.

datatype (Optional) Indicates whether data contains the data
itself or the momentum of the data:
0 = data contains the data itself (default).
1 = data contains the momentum of the data.

tsobj Name of an existing financial time series object

tsaccel

5-167

Examples Compute the acceleration for Disney stock and plot the results:

load disney.mat
dis = rmfield(dis,'VOLUME') % remove VOLUME field
dis_Accel = tsaccel(dis);
plot(dis_Accel)
title('Acceleration for Disney')

See Also tsmom

Reference Kaufman, P. J., The New Commodity Trading Systems and Methods, New
York: John Wiley & Sons, 1987.

tsmom

5-168

5tsmomPurpose Momentum between periods

Syntax mom = tsmom(data, nperiods)
momts = tsmom(tsobj, nperiods)

Arguments

Description Momentum is the difference between two prices (data points) separated by a
number of periods.

mom = tsmom(data, nperiods) calculates the momentum of a data series
data. If nperiods is specified, tsmom uses that value instead of the default 12.

momts = tsmom(tsobj, nperiods) calculates the momentum of all data
series in the financial time series object tsobj. Each data series in tsobj is
treated individually. momts is a financial time series object with similar dates
and data series names as tsobj. If nperiods is specified, tsmom uses that value
instead of the default 12.

data Data series. Column-oriented vector or matrix.

nperiods (Optional) Number of periods. Default = 12.

tsobj Financial time series object

tsmom

5-169

Examples Compute the momentum for Disney stock and plot the results:

load disney.mat
dis = rmfield(dis,'VOLUME') % remove VOLUME field
dis_Mom = tsmom(dis);
plot(dis_Mom)
title('Momentum for Disney')

See Also tsaccel

tsmovavg

5-170

5tsmovavgPurpose Moving average

Syntax output = tsmovavg(tsobj, 's', lag) (Simple)
output = tsmovavg(vector, 's', lag, dim)
output = tsmovavg(tsobj, 'e', timeperiod) (Exponential)
output = tsmovavg(vector, 'e', timeperiod, dim)
output = tsmovavg(tsobj, 't', numperiod) (Triangular)
output = tsmovavg(vector, 't', numperiod, dim)
output = tsmovavg(tsobj, 'w', weights) (Weighted)
output = tsmovavg(vector, 'w', weights, dim)
output = tsmovavg(tsobj, 'm', numperiod) (Modified)
output = tsmovavg(vector, 'm', numperiod, dim)

Arguments

Description output = tsmovavg(tsobj, 's', lag) and
output = tsmovavg(vector, 's', lag, dim) compute the simple moving
average. lag indicates the number of previous data points used in conjunction
with the current data point when calculating the moving average.

tsobj Financial time series object

lag Number of previous data points

vector Row vector or row-oriented matrix. Each row is a set of
observations.

dim (Optional) Specifies dimension when input is a vector
or matrix. Default = 2 (Row-oriented matrix: each row
is a variable, and each column is an observation.). If
dim = 1, input is assumed to be a column vector or
column-oriented matrix (each column is a variable and
each row an observation). output is identical in format
to input.

timeperiod Length of time period

numperiod Number of periods considered

weights Weights for each element in the window

tsmovavg

5-171

output = tsmovavg(tsobj, 'e', timeperiod) and
output = tsmovavg(vector, 'e', timeperiod, dim) compute the
exponential weighted moving average. The exponential moving average is a
weighted moving average, where timeperiod specifies the time period.
Exponential moving averages reduce the lag by applying more weight to recent
prices. For example, a 10-period exponential moving average weights the most
recent price by 18.18%. (2/(timeperiod + 1)).

output = tsmovavg(tsobj, 't', numperiod) and
output = tsmovavg(vector, 't', numperiod, dim) compute the triangular
moving average. The triangular moving average double-smooths the data.
tsmovavg calculates the first simple moving average with window width of
ceil(numperiod + 1)/2. Then it calculates a second simple moving average on
the first moving average with the same window size.

output = tsmovavg(tsobj, 'w', weights) and
output = tsmovavg(vector, 'w', weights, dim) calculate the weighted
moving average by supplying weights for each element in the moving window.
The length of the weight vector determines the size of the window. If larger
weight factors are used for more recent prices and smaller factors for previous
prices, the trend is more responsive to recent changes.

output = tsmovavg(tsobj, 'm', numperiod) and
output = tsmovavg(vector, 'm', numperiod, dim) calculate the modified
moving average. The modified moving average is similar to the simple moving
average. Consider the argument numperiod to be the lag of the simple moving
average. The first modified moving average is calculated like a simple moving
average. Subsequent values are calculated by adding the new price and
subtracting the last average from the resulting sum.

See Also mean, peravg

Reference Achelis, Steven B., Technical Analysis from A To Z, Second printing,
McGraw-Hill, 1995, pp. 184-192.

typprice

5-172

5typpricePurpose Typical price

Syntax tprc = typprice(highp, lowp, closep)
tprc = typprice([highp lowp closep])
tprcts = typprice(tsobj)
tprcts = typprice(tsobj, ParameterName, ParameterValue, ...)

Arguments

Description tprc = typprice(highp, lowp, closep) calculates the typical prices tprc
from the high (highp), low (lowp), and closing (closep) prices. The typical price
is the average of the high, low, and closing prices for each period.

tprc = typprice([highp lowp closep]) accepts a three-column matrix as
the input rather than two individual vectors. The columns of the matrix
represent the high, low, and closing prices, in that order.

tprcts = typprice(tsobj) calculates the typical prices from the stock data
contained in the financial time series object tsobj. The object must contain, at
least, the High, Low, and Close data series. The typical price is the average of
the closing price plus the high and low prices. tprcts is a financial time series
object of the same dates as tsobj containing the data series TypPrice.

tprcts = typprice(tsobj, ParameterName, ParameterValue, ...)
accepts parameter name/parameter value pairs as input. These pairs specify
the name(s) for the required data series if it is different from the expected
default name(s). Valid parameter names are

• HighName: high prices series name

• LowName: low prices series name

• CloseName: closing prices series name

Parameter values are the strings that represent the valid parameter names.

highp High price (vector)

lowp Low price (vector)

closep Closing price (vector)

tsobj Financial time series object

typprice

5-173

Examples Compute the typical price for Disney stock and plot the results:

load disney.mat
dis_Typ = typprice(dis);
plot(dis_Typ)
title('Typical Price for Disney')

See Also medprice, wclose

Reference Achelis, Steven B., Technical Analysis from A To Z, Second printing,
McGraw-Hill, 1995, pp. 291 - 292.

uminus

5-174

5uminusPurpose Unary minus of financial time series object

Syntax uminus

Description uminus implements unary minus for a financial time series object.

See Also uplus

uplus

5-175

5uplusPurpose Unary plus of financial time series object

Syntax uplus

Description uplus implements unary plus for a financial time series object.

See Also uminus

vertcat

5-176

5vertcatPurpose Concatenate financial time series objects vertically

Description vertcat implements vertical concatenation of financial time series objects.
vertcat essentially adds data points to a time series object. Objects to be
vertically concatenated must not have any duplicate dates and/or times or any
overlapping dates and/or times. The description fields are concatenated as well.
They are separated by ||.

Examples Create two financial time series objects with daily frequencies:

myfts = fints((today:today+4)', (1:5)', 'DataSeries', 'd');
yourfts = fints((today+5:today+9)', (11:15)', 'DataSeries', 'd');

Use vertcat to concatenate them vertically:

newfts1 = [myfts; yourfts]

newfts1 =

 desc: ||
 freq: Daily (1)

 'dates: (10)' 'DataSeries: (10)'
 '11-Dec-2001' [1]
 '12-Dec-2001' [2]
 '13-Dec-2001' [3]
 '14-Dec-2001' [4]
 '15-Dec-2001' [5]
 '16-Dec-2001' [11]
 '17-Dec-2001' [12]
 '18-Dec-2001' [13]
 '19-Dec-2001' [14]
 '20-Dec-2001' [15]

 Create two financial time series objects with different frequencies:

myfts = fints((today:today+4)', (1:5)', 'DataSeries', 'd');
hisfts = fints((today+5:7:today+34)', (11:15)', 'DataSeries',...
'w');

Concatenate these two objects vertically:

vertcat

5-177

newfts2 = [myfts; hisfts]

 newfts2 =

 desc: ||
 freq: Unknown (0)

 'dates: (10)' 'DataSeries: (10)'
 '11-Dec-2001' [1]
 '12-Dec-2001' [2]
 '13-Dec-2001' [3]
 '14-Dec-2001' [4]
 '15-Dec-2001' [5]
 '16-Dec-2001' [11]
 '23-Dec-2001' [12]
 '30-Dec-2001' [13]
 '06-Jan-2002' [14]
 '13-Jan-2002' [15]

If all frequency indicators are the same, the new object has the same frequency
indicator. However, if one of the concatenated objects has a different freq from
the other(s), the frequency of the resulting object is set to Unknown (0). In these
examples, newfts1 has Daily frequency, while newfts2 has Unknown (0)
frequency.

 See Also horzcat

volroc

5-178

5volrocPurpose Volume rate of change

Syntax vroc = volroc(tvolume nperiods)
vrocts = volroc(tsobj, nperiods)
vrocts = volroc(tsobj, nperiods, ParameterName, ParameterValue)

Arguments

Description vroc = volroc(tvolume nperiods) calculates the volume rate of change,
vroc, from the volume traded data tvolume. If nperiods is specified, the
volume rate of change is calculated between the current volume and the
volume nperiods ago.

vrocts = volroc(tsobj, nperiods) calculates the volume rate of change,
vrocts, from the financial time series object tsobj. The vrocts output is a
financial time series object with similar dates as tsobj and a data series named
VolumeROC. If nperiods is specified, the volume rate of change is calculated
between the current volume and the volume nperiods ago.

vrocts = volroc(tsobj, nperiods, ParameterName, ParameterValue)
specifies the name for the required data series when it is different from the
default name. The valid parameter name is
• VolumeName: volume traded series name

The parameter value is a string that represents the valid parameter name.

tvolume Volume traded

nperiods (Optional) Period difference. Default = 12.

tsobj Financial time series object

volroc

5-179

Examples Compute the volume rate of change for Disney stock and plot the results:

load disney.mat
dis_VolRoc = volroc(dis)
plot(dis_VolRoc)
title('Volume Rate of Change for Disney')

See Also prcroc

Reference Achelis, Steven B., Technical Analysis from A To Z, Second printing,
McGraw-Hill, 1995, pp. 310 - 311.

wclose

5-180

5wclosePurpose Weighted close

Syntax wcls = wclose(highp, lowp, closep)
wcls = wclose([highp lowp closep])
wclsts = wclose(tsobj)
wclsts = wclose(tsobj, ParameterName, ParameterValue, ...)

Arguments

Description The weighted close price is the average of twice the closing price plus the high
and low prices.

wcls = wclose(highp, lowp, closep) calculates the weighted close prices
wcls based on the high (highp), low (lowp), and closing (closep) prices per
period.

wcls = wclose([highp lowp closep]) accepts a three-column matrix
consisting of the high, low, and closing prices, in that order.

wclsts = wclose(tsobj) computes the weighted close prices for a set of stock
price data contained in the financial time series object tsobj. The object must
contain the high, low, and closing prices needed for this function. The function
assumes that the series are named High, Low, and Close. All three are required.
wclsts is a financial time series object of the same dates as tsobj and contains
the data series named WClose.

wclsts = wclose(tsobj, ParameterName, ParameterValue, ...) accepts
parameter name/parameter value pairs as input. These pairs specify the
name(s) for the required data series if it is different from the expected default
name(s). Valid parameter names are

• HighName: high prices series name

• LowName: low prices series name

highp High price (vector)

lowp Low price (vector)

closep Closing price (vector)

tsobj Financial time series object

wclose

5-181

• CloseName: closing prices series name

Parameter values are the strings that represent the valid parameter names.

Examples Compute the weighted closing prices for Disney stock and plot the results:

load disney.mat
dis_Wclose = wclose(dis)
plot(dis_Wclose)
title('Weighted Closing Prices for Disney')

See Also medprice, typprice

Reference Achelis, Steven B., Technical Analysis from A To Z, Second printing,
McGraw-Hill, 1995, pp. 312 - 313.

willad

5-182

5willadPurpose Williams Accumulation/Distribution line

Syntax wadl = willad(highp, lowp, closep)
wadl = willad([highp lowp closep])
wadlts = willad(tsobj)
wadlts = willad(tsobj, ParameterName, ParameterValue, ...)

Arguments

Description wadl = willad(highp, lowp, closep) computes the Williams
Accumulation/Distribution line for a set of stock price data. The prices needed
for this function are the high (highp), low (lowp), and closing (closep) prices.
All three are required.

wadl = willad([highp lowp closep]) accepts a three-column matrix of
prices as input. The first column contains the high prices, the second contains
the low prices, and the third contains the closing prices.

wadlts = willad(tsobj) computes the Williams Accumulation/Distribution
line for a set of stock price data contained in the financial time series object
tsobj. The object must contain the high, low, and closing prices needed for this
function. The function assumes that the series are named High, Low, and Close.
All three are required. wadlts is a financial time series object with the same
dates as tsobj and a single data series named WillAD.

wadlts = willad(tsobj, ParameterName, ParameterValue, ...) accepts
parameter name/parameter value pairs as input. These pairs specify the
name(s) for the required data series if it is different from the expected default
name(s). Valid parameter names are

• HighName: high prices series name

• LowName: low prices series name

• CloseName: closing prices series name

highp High price (vector)

lowp Low price (vector)

closep Closing price (vector)

tsobj Time series object

willad

5-183

Parameter values are the strings that represent the valid parameter names.

Examples Compute the Williams A/D line for Disney stock and plot the results:

load disney.mat
dis_Willad = willad(dis)
plot(dis_Willad)
title('Williams A/D Line for Disney')

See Also adline, adosc, willpctr

 Reference Achelis, Steven B., Technical Analysis from A To Z, Second printing,
McGraw-Hill, 1995, pp. 314 - 315.

willpctr

5-184

5willpctrPurpose Williams %R

Syntax wpctr = willpctr(highp, lowp, closep, nperiods)
wpctr = willpctr([highp, lowp, closep], nperiods)
wpctrts = willpctr(tsobj)
wpctrts = willpctr(tsobj, nperiods)
wpctrts = willpctr(tsobj, nperiods, ParameterName, ParameterValue,

...)

Arguments

Description wpctr = willpctr(highp, lowp, closep, nperiods) calculates the
Williams %R values for the given set of stock prices for a specified number of
periods nperiods. The stock prices needed are the high (highp), low (lowp), and
closing (closep) prices. wpctr is a vector that represents the Williams %R
values from the stock data.

wpctr = willpctr([highp, lowp, closep], nperiods) accepts the price
input as a three-column matrix representing the high, low, and closing prices,
in that order.

wpctrts = willpctr(tsobj) calculates the Williams %R values for the
financial time series object tsobj. The object must contain at least three data
series named High (high prices), Low (low prices), and Close (closing prices).
wpctrts is a financial time series object with the same dates as tsobj and a
single data series named WillPctR.

wpctrts = willpctr(tsobj, nperiods) calculates the Williams %R values
for the financial time series object tsobj for nperiods periods.

highp High price (vector)

lowp Low price (vector)

closep Closing price (vector)

nperiods Number of periods (scalar). Default = 14.

tsobj Financial time series object

willpctr

5-185

wpctrts = willpctr(tsobj, nperiods, ParameterName, ParameterValue,
...) accepts parameter name/parameter value pairs as input. These pairs
specify the name(s) for the required data series if it is different from the
expected default name(s). Valid parameter names are

• HighName: high prices series name

• LowName: low prices series name

• CloseName: closing prices series name

Parameter values are the strings that represent the valid parameter names.

Examples Compute the Williams %R values for Disney stock and plot the results:

load disney.mat
dis_Wpctr = willpctr(dis)
plot(dis_Wpctr)
title('Williams %R for Disney')

See Also stochosc, willad

willpctr

5-186

Reference Achelis, Steven B., Technical Analysis from A To Z, Second printing,
McGraw-Hill, 1995, pp. 316 - 317.

Index-1

Index

A
acceleration 5-166
adline 5-10
adosc 5-13
analysis, technical 3-2
arithmetic 2-15
ascii2fts 5-15

creating object with 1-14
axes

combining 1-23

B
bar 5-19
bar3 5-22
bar3h 5-22
barh 5-19
bollinger 5-25
boxcox 5-27

example 2-20
busdays 5-29

C
candle 5-30
chaikosc 5-32
chaikvolat 5-34
chartfts 5-37

combine axes feature 1-23
purpose 1-17
using 1-17

chartfts zoom feature 1-20
charting 3-2
chfield 5-39
Combine Axes tool 1-23
compatible time series 2-15
component 2-3

convertto 5-40
cumsum 5-41

D
data extraction 2-3
data series vector 2-3
data transformation 2-19
date string 2-7

indexing 2-8
range 2-9

date vector 2-3
datestr 2-7
default values 2-3
demonstration program 2-24
description field

component name 2-3
setting 1-13

diff 5-42
display 5-43
double-colon operator 2-9

E
end 5-44

MATLAB variable 2-12
equal time series 2-15
exp 5-46
extfield 5-47
extracting data 2-3

F
fetch 5-48
fieldnames 5-52
fillts 5-53

Index

Index-2

example 4-10
filter 5-58
fints 5-59

syntaxes 1-3
fintsver 5-66
fpctkd 5-67
frequency

indicator field 2-3
indicators 1-12
setting 1-12

frequency conversion functions
Data menu 4-12
table 2-19

fts2ascii 5-72
fts2mat 5-73
ftsbound 5-74

displaying dates with 2-10
ftsdata subdirectory 1-14
ftsgui 5-75

command 4-2
ftsinfo 5-76
ftsnew2old 5-78
ftsold2new 5-79
ftstomtx 5-83
ftstool 5-80
ftsuniq 5-82

G
getfield 5-83
graphical user interface 4-2
GUI 4-2

starting with ftsgui 5-75

H
hhigh 5-86

highlow 5-88
hist 5-91
horzcat 5-93

I
indexing

date range 2-9
date string 2-8
integer 2-10
with time-of-day data 2-12

iscompatible 5-95
isequal 5-96
isfield 5-97
issorted 5-98

L
lagts 5-99
leadts 5-100
length 5-101
llow 5-102
log 5-104
log10 5-106
log2 5-105

M
macd 5-107
MACD signal line 5-107
main GUI window 4-2
max 5-109
mean 5-110
medprice 5-111
min 5-113
minus 5-114
momentum 5-168

Index

Index-3

Moving Average Convergence/Divergence (MACD)
5-107

mrdivide 5-115
mtimes 5-116

N
negvolidx 5-117

O
object structure 1-3
On-Balance Volume (OBV) 3-9
onbalvol 5-119
overloaded functions

most common 2-23
types of 2-15

P
peravg 5-121
plot 5-122
plus 5-124
posvolidx 5-125
power 5-127
prcroc 5-128
pvtrend 5-130

R
rdivide 5-132
refield 5-134
Relative Strength Index (RSI) 3-8
resamplets 5-133
rsindex 5-135

S
serial dates 2-7
setfield 5-137
signal line 5-107
size 5-139
smoothts 5-140
sortfts 5-142
spctkd 5-143
std 5-146
stochosc 5-147
structures 2-3
subsasgn 5-150
subsref 5-153

T
technical analysis 3-2
text file transformation 1-14
times 5-157
toannual 5-158
todaily 5-159
todecimal 5-160
tomonthly 5-161
toquarterly 5-162
toquoted 5-163
tosemi 5-164
toweekly 5-165
tsaccel 5-166
tsmom 5-168
tsmovavg 5-170
typprice 5-172

U
uminus 5-174
uplus 5-175

Index

Index-4

V
vertcat 5-176
volroc 5-178

W
wclose 5-180
willad 5-182
Williams %R 3-6
willpctr 5-184

example 3-6

Z
Zoom tool 1-20

	Getting Started
	What is the Financial Time Series Toolbox?
	Creating Financial Time Series Objects
	Using the Constructor
	Transforming a Text File

	Visualizing Financial Time Series Objects
	Using chartfts
	Zoom Tool
	Combine Axes Tool

	Using Financial Time Series
	Introduction
	Working with Financial Time Series Objects
	Financial Time Series Object Structure
	Data Extraction
	Object to Matrix Conversion
	Indexing a Financial Time Series Object
	Operations
	Data Transformation and Frequency Conversion

	Demonstration Program
	Load the Data
	Create Financial Time Series Objects
	Create Closing Prices Adjustment Series
	Adjust Closing Prices and Make Them Spot Prices
	Create Return Series
	Regress Return Series Against Metric Data
	Plot the Results
	Calculate the Dividend Rate

	Technical Analysis
	Introduction
	Examples
	Moving Average Convergence/Divergence (MACD)
	Williams %R
	Relative Strength Index (RSI)
	On-Balance Volume (OBV)

	Graphical User Interface
	Financial Time Series Graphical User Interface (GUI)
	Main Window

	Using the Financial Time Series GUI
	Getting Started
	Data Menu
	Analysis Menu
	Graphs Menu
	Saving Time Series Data

	Function Reference
	Functions - Categorical List
	Financial Time Series Object and File Construction
	Arithmetic Functions
	Mathematical Functions
	Utility Functions
	Data Transformation Functions
	Indicator Functions
	Calendar Functions
	Plotting Functions
	Graphical User Interface Function
	Financial Time Series Object Management Function
	Information Retrieval Functions
	Obsolete Functions

	Functions — Alphabetical List

	Index

